1
Fork 0
internship/swash/processing/post.py

112 lines
3 KiB
Python
Raw Normal View History

2022-03-03 15:51:51 +01:00
import argparse
2022-03-04 10:23:24 +01:00
import configparser
2022-03-03 15:51:51 +01:00
import logging
2022-03-04 10:23:24 +01:00
import pathlib
2022-03-03 15:51:51 +01:00
2022-03-04 10:23:24 +01:00
import matplotlib.pyplot as plt
2022-03-03 15:51:51 +01:00
import numpy as np
import pandas as pd
import scipy.signal as sgl
2022-03-07 10:52:22 +01:00
import scipy.fft as fft
2022-03-03 15:51:51 +01:00
from .read_swash import *
parser = argparse.ArgumentParser(description="Post-process swash output")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("post")
log.info("Starting post-processing")
config = configparser.ConfigParser()
config.read("config.ini")
2022-03-04 11:30:23 +01:00
inp = pathlib.Path(config.get("post", "inp"))
2022-03-03 15:51:51 +01:00
root = pathlib.Path(config.get("swash", "out"))
2022-03-04 11:30:23 +01:00
log.info(f"Reading bathymetry from '{inp}'")
2022-03-07 12:25:38 +01:00
data = np.load(inp.joinpath(config.get("post", "case")))
2022-03-03 16:02:52 +01:00
x, t = data["x"], data["t"]
2022-03-03 15:51:51 +01:00
# Cospectral calculations
x0 = config.getint("post", "x0")
2022-03-04 11:03:06 +01:00
arg_x0 = np.abs(x - x0).argmin()
2022-03-03 16:02:52 +01:00
t0 = config.getfloat("post", "t0")
2022-03-04 11:03:06 +01:00
arg_t0 = np.abs(t - t0).argmin()
2022-03-03 16:02:52 +01:00
dt = config.getfloat("post", "dt")
2022-03-03 15:51:51 +01:00
f = 1 / dt
2022-03-07 12:25:38 +01:00
nperseg = config.getint("post", "nperseg", fallback=None)
2022-03-03 15:51:51 +01:00
log.info(f"Computing reflection coefficient at x={x0}")
2022-03-04 11:01:01 +01:00
eta = data["watl"][t > t0, arg_x0]
u = data["vel"][t > t0, 0, arg_x0]
2022-03-03 15:51:51 +01:00
2022-03-07 12:25:38 +01:00
phi_eta = np.abs(sgl.welch(eta, f, nperseg=nperseg))
phi_u = np.abs(sgl.welch(u, f, nperseg=nperseg))
phi_eta_u = np.abs(sgl.csd(eta, u, f, nperseg=nperseg))
2022-03-03 15:51:51 +01:00
R = np.sqrt(
(phi_eta[1] + phi_u[1] - 2 * phi_eta_u[1])
/ (phi_eta[1] + phi_u[1] + 2 * phi_eta_u[1])
)
# Plotting
log.info("Plotting results")
2022-03-04 10:52:28 +01:00
fig, (ax_watl, ax_vel) = plt.subplots(2)
2022-03-03 15:51:51 +01:00
2022-03-07 12:30:50 +01:00
ax_watl.plot(t, data["watl"][:, arg_x0], lw=1, label="watl")
2022-03-04 10:52:28 +01:00
ax_watl.set(xlabel="t (s)", ylabel="z (m)")
ax_watl.autoscale(axis="x", tight=True)
ax_watl.grid()
ax_watl.axvline(t0, c="k", alpha=0.2)
2022-03-03 15:51:51 +01:00
2022-03-07 12:30:50 +01:00
ax_vel.plot(t, data["vel"][:, 0, arg_x0], lw=1, label="vel")
2022-03-03 15:51:51 +01:00
ax_vel.set(xlabel="t (s)", ylabel="U (m/s)")
ax_vel.autoscale(axis="x", tight=True)
ax_vel.grid()
ax_vel.axvline(t0, c="k", alpha=0.2)
fig.tight_layout()
fig_r, ax_r = plt.subplots()
2022-03-07 10:52:22 +01:00
ax_fft = ax_r.twinx()
ax_fft.plot(
2022-03-07 12:25:38 +01:00
*sgl.welch(eta, 1/dt, nperseg=nperseg),
2022-03-07 10:52:22 +01:00
lw=1,
c="k",
alpha=0.2,
2022-03-07 12:30:50 +01:00
label="PSD ($\\eta$)",
2022-03-07 10:52:22 +01:00
)
2022-03-07 12:25:38 +01:00
ax_r.plot(phi_eta[0], R, marker="+", label="R")
2022-03-07 10:52:22 +01:00
ax_r.set(xlim=(0, 0.3), ylim=(0, 1), xlabel="f (Hz)", ylabel="R")
2022-03-07 12:25:38 +01:00
ax_fft.set(ylim=0, ylabel="PSD (m²/Hz)")
2022-03-03 15:51:51 +01:00
ax_r.grid()
2022-03-07 12:25:38 +01:00
ax_r.legend(loc="upper left")
ax_fft.legend(loc="upper right")
fig_r.tight_layout()
2022-03-03 15:51:51 +01:00
2022-03-07 12:30:50 +01:00
fig_x, ax_x = plt.subplots(figsize=(10, 1))
2022-03-04 11:01:01 +01:00
ax_x.plot(data["x"], -data["botl"], color="k")
2022-03-04 11:32:46 +01:00
ax_x.fill_between(
data["x"],
-data["botl"],
np.maximum(data["watl"][arg_t0, :], -data["botl"]),
)
2022-03-03 15:51:51 +01:00
ax_x.axvline(x0, c="k", alpha=0.2)
ax_x.set(xlabel="x (m)", ylabel="z (m)")
ax_x.autoscale(axis="x", tight=True)
2022-03-07 12:30:50 +01:00
ax_x.set(aspect="equal")
fig_x.tight_layout()
2022-03-03 15:51:51 +01:00
2022-03-04 11:07:43 +01:00
out = pathlib.Path(config.get("post", "out")).joinpath(f"t{t0}x{x0}")
2022-03-03 15:51:51 +01:00
log.info(f"Saving plots in '{out}'")
2022-03-04 11:08:55 +01:00
out.mkdir(parents=True, exist_ok=True)
2022-03-03 15:51:51 +01:00
2022-03-07 10:52:22 +01:00
fig.savefig(out.joinpath("t.png"))
fig_r.savefig(out.joinpath("R.png"))
fig_x.savefig(out.joinpath("x.png"))
2022-03-03 15:51:51 +01:00
log.info("Finished post-processing")