From 1a0f74103b3b3f1f10d5119bf971753ccc2b2e69 Mon Sep 17 00:00:00 2001 From: "Edgar P. Burkhart" Date: Wed, 9 Feb 2022 16:14:38 +0100 Subject: [PATCH] Biblio: models --- biblio/chapters/literature.tex | 59 ++++++++- biblio/library.bib | 168 ++++++++++++++++++++++++- biblio/notes/bibliography_research.tex | 4 +- 3 files changed, 225 insertions(+), 6 deletions(-) diff --git a/biblio/chapters/literature.tex b/biblio/chapters/literature.tex index b8aff68..da5de39 100644 --- a/biblio/chapters/literature.tex +++ b/biblio/chapters/literature.tex @@ -149,7 +149,7 @@ of the sensors, showing that the time delay between sensors leads to a peak in the reflection coefficient at a frequency related to this time delta. %%% TODO? %%% -%\begin{itemize} \item \cite{sheremet2002observations}: \end{itemize} +% \cite{sheremet2002observations} \subsection{Conclusion} @@ -170,10 +170,65 @@ should then be used to evaluate the reflection coefficient of the Artha breakwater and to separate the incident and reflected wave components from the measured data. -\section{Modeling wave impact on a breakwater} +\section{Modelling wave impact on a breakwater} + +Modelling rubble-mound breakwaters such as the Artha breakwater requires +complex considerations on several aspects. First of all, an accurate of the +fluid's behavior in the porous armour of the breakwater is necessary. Then, +adequate turbulence models are needed in order to obtain accurate results. +Several types of models have been developped that can be used to study breaking +wave flow on a porous breakwater. \subsection{SPH models} +Smoothed-Particle Hydrodynamics (SPH) models rely on a Lagrangian +representation of the fluid. + +\subsubsection{Porosity modelling} + +\cite{jiang2007mesoscale} +\cite{jutzi2008numerical} +\cite{shao2010} +\cite{altomare2014numerical} +\cite{kunz2016study} +\textbf{\cite{ren2016improved}} +\cite{pahar2016modeling} +\cite{peng2017multiphase} +\cite{wen20183d} +\cite{kazemi2020sph} + +\subsubsection{Wave generation} + +\cite{yim2008numerical} +\cite{altomare2017long} +\cite{wen2018non} \subsection{VARANS models} +\cite{van1995wave,troch1999development} + +COBRAS \parencite{liu1999numerical}: spatially averaged RANS +with $k-\varepsilon$ turbulence model. Drag forces modeled by empirical linear +and non-linear friction terms; \cite{hsu2002numerical}: introduced VARANS in +order to account for small scale turbulence inside the porous media. +-> +COBRAS-UC/IH2VOF \parencite{losada2008numerical,lara2008wave}: VOF VARANS (2D); +refactor of COBRAS code, with improved wave generation, improvement of input +and output data. +-> +IH3VOF \parencite{del2011three}: 3D VOF VARANS, updated porous media equations, +optimization of accuracy vs computation requirements, specific boundary +conditions, validation. Adding SST model. +-> +IHFOAM/olaFlow \parencite{higuera2015application}: Rederivation of +\cite{del2011three}, add time-varying porosity; Improvement to wave generation +and absorption; implementation in OpenFOAM; extensive validation; application +to real coastal structures. + +\cite{vieira2021novel}: Use of artificial neural networks to determine porosity +parameter for VOF VARANS model. + +\subsection{Other} + +BEM: \cite{hall1994boundary,koley2020numerical} + \section{Modeling block displacement} diff --git a/biblio/library.bib b/biblio/library.bib index d51fdee..d0faf83 100644 --- a/biblio/library.bib +++ b/biblio/library.bib @@ -534,7 +534,7 @@ publisher={Elsevier} } -@article{PARIS20111, +@article{paris2011, title={Boulders as a signature of storms on rock coasts}, journal={Marine Geology}, volume={283}, @@ -560,7 +560,7 @@ DOI={10.5194/nhess-16-737-2016} } -@article{SHAO2010304, +@article{shao2010, title={Incompressible SPH flow model for wave interactions with porous media}, journal={Coastal Engineering}, volume={57}, @@ -730,3 +730,167 @@ year={1985} } +@article{peng2017multiphase, + title={Multiphase SPH modeling of free surface flow in porous media with variable porosity}, + author={Peng, Chong and Xu, Guofang and Wu, Wei and Yu, Hai-sui and Wang, Chun}, + journal={Computers and Geotechnics}, + volume={81}, + pages={239--248}, + year={2017}, + publisher={Elsevier} +} + +@article{jiang2007mesoscale, + title={Mesoscale SPH modeling of fluid flow in isotropic porous media}, + author={Jiang, Fangming and Oliveira, M{\'o}nica SA and Sousa, Antonio CM}, + journal={Computer Physics Communications}, + volume={176}, + number={7}, + pages={471--480}, + year={2007}, + publisher={Elsevier} +} + +@article{jutzi2008numerical, + title={Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH hydrocode}, + author={Jutzi, Martin and Benz, Willy and Michel, Patrick}, + journal={Icarus}, + volume={198}, + number={1}, + pages={242--255}, + year={2008}, + publisher={Elsevier} +} + +@article{ren2016improved, + title={Improved SPH simulation of wave motions and turbulent flows through porous media}, + author={Ren, Bing and Wen, Hongjie and Dong, Ping and Wang, Yongxue}, + journal={Coastal Engineering}, + volume={107}, + pages={14--27}, + year={2016}, + publisher={Elsevier} +} + +@article{kunz2016study, + title={Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments}, + author={Kunz, P and Zarikos, IM and Karadimitriou, NK and Huber, M and Nieken, U and Hassanizadeh, SM}, + journal={Transport in Porous Media}, + volume={114}, + number={2}, + pages={581--600}, + year={2016}, + publisher={Springer} +} + +@article{kazemi2020sph, + title={SPH-based numerical treatment of the interfacial interaction of flow with porous media}, + author={Kazemi, Ehsan and Tait, Simon and Shao, Songdong}, + journal={International Journal for Numerical Methods in Fluids}, + volume={92}, + number={4}, + pages={219--245}, + year={2020}, + publisher={Wiley Online Library} +} + +@article{wen20183d, + title={3D SPH porous flow model for wave interaction with permeable structures}, + author={Wen, Hongjie and Ren, Bing and Wang, Guoyu}, + journal={Applied ocean research}, + volume={75}, + pages={223--233}, + year={2018}, + publisher={Elsevier} +} + +@article{pahar2016modeling, + title={Modeling free-surface flow in porous media with modified incompressible SPH}, + author={Pahar, Gourabananda and Dhar, Anirban}, + journal={Engineering Analysis with Boundary Elements}, + volume={68}, + pages={75--85}, + year={2016}, + publisher={Elsevier} +} + +@article{altomare2017long, + title={Long-crested wave generation and absorption for SPH-based DualSPHysics model}, + author={Altomare, Corrado and Dom{\'\i}nguez, Jose M and Crespo, AJC and Gonz{\'a}lez-Cao, J and Suzuki, T and G{\'o}mez-Gesteira, M and Troch, P}, + journal={Coastal Engineering}, + volume={127}, + pages={37--54}, + year={2017}, + publisher={Elsevier} +} + +@article{yim2008numerical, + title={Numerical simulations of wave generation by a vertical plunger using RANS and SPH models}, + author={Yim, Solomon C and Yuk, D and Panizzo, A and Di Risio, Marcello and Liu, PL-F}, + journal={Journal of waterway, port, coastal, and ocean engineering}, + volume={134}, + number={3}, + pages={143--159}, + year={2008}, + publisher={American Society of Civil Engineers} +} + +@article{wen2018non, + title={A non-reflective spectral wave maker for SPH modeling of nonlinear wave motion}, + author={Wen, Hongjie and Ren, Bing}, + journal={Wave motion}, + volume={79}, + pages={112--128}, + year={2018}, + publisher={Elsevier} +} + +@article{vieira2021novel, + title={Novel time-efficient approach to calibrate VARANS-VOF models for simulation of wave interaction with porous structures using Artificial Neural Networks}, + author={Vieira, Filipe and Taveira-Pinto, Francisco and Rosa-Santos, Paulo}, + journal={Ocean Engineering}, + volume={235}, + pages={109375}, + year={2021}, + publisher={Elsevier} +} + +@article{liu1999numerical, + title={Numerical modeling of wave interaction with porous structures}, + author={Liu, Philip L-F and Lin, Pengzhi and Chang, Kuang-An and Sakakiyama, Tsutomu}, + journal={Journal of waterway, port, coastal, and ocean engineering}, + volume={125}, + number={6}, + pages={322--330}, + year={1999}, + publisher={American Society of Civil Engineers} +} + +@article{hsu2002numerical, + title={A numerical model for wave motions and turbulence flows in front of a composite breakwater}, + author={Hsu, Tian-Jian and Sakakiyama, Tsutomu and Liu, Philip L-F}, + journal={Coastal Engineering}, + volume={46}, + number={1}, + pages={25--50}, + year={2002}, + publisher={Elsevier} +} + +@incollection{hall1994boundary, + title={Boundary element method}, + author={Hall, William S}, + booktitle={The boundary element method}, + pages={61--83}, + year={1994}, + publisher={Springer} +} + +@incollection{van1995wave, + title={Wave action on and in permeable structures}, + author={Van Gent, MRA and T{\"o}jnjes, P and Petit, HAH and Van den Bosch, P}, + booktitle={Coastal Engineering 1994}, + pages={1739--1753}, + year={1995} +} + diff --git a/biblio/notes/bibliography_research.tex b/biblio/notes/bibliography_research.tex index 972a263..2a805bf 100644 --- a/biblio/notes/bibliography_research.tex +++ b/biblio/notes/bibliography_research.tex @@ -54,11 +54,11 @@ oetjen2021experiments,oetjen2020significance} Très intéressant: \cite{weiss2017toward}, \cite{sheremet2002observations,sheremet2016triads} \paragraph{block transport by waves} \cite{imamura2008numerical, -barbano2010large,PARIS20111,biolchi2016} +barbano2010large,paris2011,biolchi2016} \section{Other} \cite{miche1951} \cite{isobe1985method} \section{Flow in porous media} -\paragraph{wave flow porous media} \cite{SHAO2010304} +\paragraph{wave flow porous media} \cite{shao2010}