diff --git a/biblio/chapters/literature.tex b/biblio/chapters/literature.tex index 00591ec..cf9ed82 100644 --- a/biblio/chapters/literature.tex +++ b/biblio/chapters/literature.tex @@ -393,7 +393,7 @@ Nonetheless, the representation of porosity in those models is still mainly based on experimental calibration, particularly for the inertia term of porosity induced friction. -\subsection{Conclusion} +%\subsection{Conclusion} %\paragraph{Notes} % @@ -471,57 +471,94 @@ displacement. In contrast with the findings from \textcite{nott2003waves}, the threshold wave amplitude for block displacement was found to be similar between tsunami and storm waves. -\subsection{In-situ studies} +\textcite{nandasena2013boulder,liu2014experimental} performed experimental +studies of block displacement using dam break scenarios in a flume. The results +from both studies indicate that the primary mode of boulder motion for large +boulders is sliding, rather than rolling or saltation. -\cite{barbano2010large}: boulders deposity in Sicily -> probably tsunamis +\textcite{weiss2015untangling} highlights inadequacies in the criteria that are +generally used \parencite{nott2003waves,nandasena2011reassessment}. According +to \textcite{weiss2015untangling}, the use of a minimum threshold on block +displacement does not account for the possibility of a block returning to its +initial position after being slightly disloged. A new threshold is proposed on +the minimal movement of a block, while considering the time-dependent nature of +wave-induced flow. \textcite{weiss2015untangling} also shows the importance of +the pre-transport conditions on block displacement. -\cite{paris2011}: +\textcite{kennedy2017extreme} derived new equations following the approach from +\textcite{nandasena2011numerical} accounting for non-parallelepipedic blocks. +The revised equations lead to a lower velocity threshold for block movement. +This highlights the importance of boulder shape in displacement considerations. -\cite{nandasena2011numerical} -\cite{may2015block} -\cite{biolchi2016} -\cite{kennedy2016observations} -\cite{erdmann2018boulder} -\cite{cox2018extraordinary} +\textcite{lodhi2020role} highlighted the importance of hydrodynamic pressure in +block displacement. A new equation was given for the threshold flow velocity +for block movement. An experimental validation of the models was performed, and +showed the overestimation of the threshold velocity by previous models. -\subsection{Models} +\textcite{oetjen2021experiments} performed a review of boulder displacement +experiments. They found that the initial position of boulders relative to the +wave impact has a major influence on block displacement. Conversely, the +influence of bed roughness seems to have been overestimated in the past. +Similarly to \textcite{lodhi2020role}, \textcite{oetjen2021experiments} +highlights an overestimation of minimum wave height for block displacement by +earlier equations \parencite{nott1997extremely,nandasena2011reassessment}. -\cite{nott1997extremely} - -\cite{nott2003waves} Submerged boulder: -\begin{equation} -u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag} -{C_d\left(\frac{ac}{b^2}\right)+C_l} -\end{equation} - -\cite{imamura2008numerical} -\cite{barbano2010large} -\cite{nandasena2011numerical} - -\cite{nandasena2011reassessment} -\begin{equation} -u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right) gc -\left(\cos\theta+\frac{c}{b}\sin\theta\right)} -{C_d\frac{c^2}{b^2}+C_l} -\end{equation} - -\cite{buckley2012inverse} -\cite{weiss2012mystery} -\cite{nandasena2013boulder} -\cite{liu2014experimental} -\cite{weiss2015untangling} -\cite{zainali2015boulder} -\cite{kennedy2016observations} -\cite{kennedy2017extreme} -\cite{weiss2017toward} - -\cite{bressan2018laboratory} Partially submerged boulders -\begin{equation} -u^2 \ge \frac{2b_wW}{\rho_w\left(b_DC_DA_{wfs}+b_LC_LA_{wbs}\right)} -\end{equation} - -\cite{lodhi2020role} -\cite{oetjen2020significance} - -\cite{oetjen2021experiments}: Review +\subsection{Conclusion} +%\subsection{In-situ studies} +% +%\cite{barbano2010large}: boulders deposity in Sicily -> probably tsunamis +% +%\cite{paris2011}: +% +%\cite{nandasena2011numerical} +%\cite{may2015block} +%\cite{biolchi2016} +%\cite{kennedy2016observations} +%\cite{erdmann2018boulder} +%\cite{cox2018extraordinary} +% +%\subsection{Models} +% +%\cite{nott1997extremely} +% +%\cite{nott2003waves} Submerged boulder: +%\begin{equation} +%u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag} +%{C_d\left(\frac{ac}{b^2}\right)+C_l} +%\end{equation} +% +%\cite{imamura2008numerical} +%\cite{barbano2010large} +%\cite{nandasena2011numerical} +% +%\cite{nandasena2011reassessment} +%\begin{equation} +%u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right) gc +%\left(\cos\theta+\frac{c}{b}\sin\theta\right)} +%{C_d\frac{c^2}{b^2}+C_l} +%\end{equation} +% +%\cite{buckley2012inverse} +%\cite{weiss2012mystery} +%\cite{nandasena2013boulder} +%\cite{liu2014experimental} +%\cite{weiss2015untangling} +% +% +%\cite{kennedy2016observations} +%\cite{kennedy2017extreme} +%\cite{weiss2017toward} +% +%\cite{bressan2018laboratory} Partially submerged boulders +%\begin{equation} +%u^2 \ge \frac{2b_wW}{\rho_w\left(b_DC_DA_{wfs}+b_LC_LA_{wbs}\right)} +%\end{equation} +% +%\cite{lodhi2020role} +%\cite{oetjen2020significance} +% +%\cite{oetjen2021experiments}: Review +% +%--- +%\cite{zainali2015boulder}: Numerical model of block displacement