import argparse import configparser import logging import pathlib import matplotlib.pyplot as plt import numpy as np from scipy import interpolate from scipy import fft from .olaflow import OFModel parser = argparse.ArgumentParser(description="Convert swash output to olaFlow input") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("-c", "--config", default="config.ini") parser.add_argument("-o", "--output", type=pathlib.Path) args = parser.parse_args() logging.basicConfig(level=max((10, 20 - 10 * args.verbose))) log = logging.getLogger("sws_ola") log.info("Starting sws -> olaFlow converter") config = configparser.ConfigParser() config.read(args.config) level = config.getfloat("bathy", "level", fallback=0.0) sws_out = pathlib.Path(config.get("swash", "np_out")) def data(var): return np.load(sws_out.joinpath(f"{var}.npy")) x = data("x") t_ = data("t") vel = data("vel") watl = data("watl") x0 = config.getfloat("olaflow", "x0") arg_x0 = np.argmin(np.abs(x - x0)) t0 = config.getfloat("olaflow", "t0") tf = config.getfloat("olaflow", "tf") arg_t0 = -np.argmax(t_[::-1] < (t0 * 1e3)) arg_tf = np.argmax(t_ > (tf * 1e3)) + 1 t = t_[arg_t0:arg_tf] * 1e-3 t = t - t.min() wl = watl[arg_t0:arg_tf, arg_x0] v = vel[0, arg_t0:arg_tf, arg_x0] olaflow_root = args.output org = olaflow_root.joinpath("constant", "waveDict_paddle.org").read_text() org = org.replace("{n}", str(t.size)) org = org.replace("{t}", "\n".join(t.astype(np.str_))) org = org.replace("{v}", "\n".join(v.astype(np.str_))) org = org.replace("{eta}", "\n".join(wl.astype(np.str_))) olaflow_root.joinpath("constant", "waveDict").write_text(org) fig, (ax, ax2) = plt.subplots(2) ax.plot(t, wl) ax.autoscale(True, "x", tight=True) ax.set(xlabel="t (s)", ylabel="z (m)") ax2.plot(t, v) ax2.autoscale(True, "x", tight=True) ax2.set(xlabel="t (s)", ylabel="U (m/s)") fig.savefig(olaflow_root.joinpath("constant", "wave.pdf"))