\documentclass[english, 10pt, aspectratio=169]{beamer} \useoutertheme{infolines} \usecolortheme{whale} \usepackage{polyglossia} \setmainlanguage{english} \usepackage{inter} \usepackage{unicode-math} \setmathfont[mathrm=sym]{Fira Math} \setmonofont[Ligatures=TeX]{Fira Code} \usepackage{csquotes} \usepackage{siunitx} \usepackage[ backend=biber, style=iso-authoryear, sorting=nyt, ]{biblatex} \bibliography{library} \title[50T block displacement]{Analysis of the displacement of a large concrete block under an extreme wave.} \author[Edgar P. Burkhart]{Edgar P. Burkhart \and Stéphane Abadie} \institute[SIAME]{Université de Pau et des Pays de l’Adour, E2S-UPPA, SIAME, France} \date[2022]{2022} \begin{document} \maketitle \begin{frame} \frametitle{Contents} \tableofcontents \end{frame} \section{Contexte} \subsection{Block displacement} \begin{frame} \frametitle{Context} \framesubtitle{Block displacement} \begin{columns} \column{.7\textwidth} \begin{itemize} \item \citetitle{cox2018extraordinary} \parencite{cox2018extraordinary} \item \citetitle{shah2013coastal} \parencite{shah2013coastal} \end{itemize} \column{.3\textwidth} \includegraphics[width=\textwidth]{fig/cox.png} \includegraphics[width=\textwidth]{fig/shah.png} \end{columns} \end{frame} \begin{frame} \frametitle{Context} \framesubtitle{Analytical equations of block displacement} \begin{itemize} \item \citetitle{nott2003waves} \parencite{nott2003waves} \begin{equation} u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag}{C_d\frac{ac}{b^2}+C_l} \end{equation} \item \citetitle{nandasena2011reassessment} \parencite{nandasena2011reassessment} \begin{equation} u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag\left(\cos\theta+\frac cb\sin\theta\right)} {C_d\frac{c^2}{b^2}+C_l} \end{equation} \item \citetitle{weiss2015untangling} \parencite{weiss2015untangling} \end{itemize} \end{frame} \subsection{28-02-2017 event} \begin{frame} \frametitle{Context} \framesubtitle{February 28, 2017 event} \begin{figure} \centering \includegraphics[width=.5\textwidth]{fig/artha.jpg} \caption{\SI{50}{\tonne} concrete block displaced by a wave onto the crest of the Artha breakwater ($h=\SI{8}{\m}$).} \end{figure} \end{frame} \begin{frame} \frametitle{Context} \framesubtitle{February 28, 2017 event} \begin{columns} \column{.6\textwidth} \begin{figure} \centering \includegraphics[scale=.75]{fig/ts.pdf} \caption{Free surface measured during the extreme wave identified on February 28, 2017 at 17:23 UTC ($H=\SI{13.9}{\m}$).} \end{figure} \column{.4\textwidth} \begin{figure} \centering \includegraphics[scale=.75]{fig/out_orbitals.pdf} \caption{Trajectory of the wave buoy during this particular wave.} \end{figure} \end{columns} \end{frame} \section{Results} \subsection{Wavelet analysis} \begin{frame} \frametitle{Wavelet analysis} \begin{figure} \centering \includegraphics[scale=.75]{fig/wavelet.pdf} \caption{Normalized wavelet power spectrum of rogue waves on February 28, 2017.} \end{figure} \end{frame} \subsection{1D SWASH model} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Reflection study} \begin{figure} \centering \includegraphics[scale=.75]{fig/bathy.pdf} \caption{Domain 1 studied with a SWASH model (real case).} \end{figure} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Reflection study} \begin{figure} \centering \includegraphics[scale=.75]{fig/bathy_nb.pdf} \caption{Domain 2 studied with a SWASH model (without breakwater).} \end{figure} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Reflection study} \begin{itemize} \item 1D model over 2 layers (instability with more layers) \item Mesh with \SI{1}{\m} resolution \item Spectral boundary condition with buoy spectrum \item \SI{4}{\hour} model duration (around 1200 waves) \item Model calibrated by \textcite{poncet2021characterization} \end{itemize} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Reflection study} \begin{figure} \centering \includegraphics[scale=.75]{fig/maxw.pdf} \caption{Free surface calculated by swash with spectral boundary condition at the buoy location. The plot is centered on the largest obtained wave.\newline {\itshape Case 1: Real bathymetry; Case 2: simplified bathymetry (no breakwater).}} \end{figure} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Wave propagation from the buoy to the breakwater} \begin{itemize} \item 1D model over 4 layers (instability with more layers) \item Mesh with \SI{1}{\m} resolution \item Free surface elevation boundary condition with raw buoy data \end{itemize} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Wave propagation from the buoy to the breakwater} \begin{figure} \centering \includegraphics[scale=.75]{fig/x.pdf} \caption{Propagation of the studied wave from the buoy to the Artha breakwater.} \end{figure} \end{frame} \begin{frame} \frametitle{1-dimensionnal SWASH model} \framesubtitle{Wavelet analysis} \begin{figure} \centering \includegraphics[scale=.75]{fig/wavelet_sw.pdf} \caption{Wavelet analysis from free surface elevation computed by SWASH along the SWASH domain.} \end{figure} \end{frame} \subsection{2Dv Olaflow model} \begin{frame} \frametitle{Olaflow model in 2 vertical dimensions} \framesubtitle{Study of the hydrodynamic conditions on the breakwater armour} \begin{figure} \centering \includegraphics[scale=.75]{fig/aw_t0.pdf} \caption{Domain studied with a 2Dv Olaflow model.} \end{figure} \end{frame} \begin{frame} \frametitle{Olaflow model in 2 vertical dimensions} \framesubtitle{Study of the hydrodynamic conditions on the breakwater armour} \begin{itemize} \item VOF model based on VARANS equations \item 2Dv mesh with \SI{50}{\cm} resolution \item $k-\omega$ SST turbulence model \item Qualitative calibration using photographs \end{itemize} \end{frame} \begin{frame} \frametitle{Olaflow model in 2 vertical dimensions} \framesubtitle{Study of the hydrodynamic conditions on the breakwater armour} \begin{figure} \centering \includegraphics[scale=.75]{fig/U.pdf} \caption{Flow velocity computed on the Artha breakwater ($x=\SI{-20}{\m}$); bottom: $z=\SI{5}{\m}$.} \end{figure} \end{frame} \begin{frame} \frametitle{Olaflow model in 2 vertical dimensions} \framesubtitle{Study of the hydrodynamic conditions on the breakwater armour} \begin{itemize} \item Flow velocity computed with Olaflow: \begin{equation} U = \SI{14.5}{\m\per\s} \end{equation} \item Flow velocity calculated using \textcite{nandasena2011reassessment}: \begin{equation} U = \SI{19.4}{\m\per\s} \end{equation} \item \textcite{weiss2015untangling}: time dependency does matter. \end{itemize} \end{frame} \section{Conclusion} \begin{frame} \frametitle{Conclusion} \begin{itemize} \item Flow velocity lower than \textcite{nandasena2011reassessment}, in accordance with \textcite{lodhi2020role} \item Time dependency matters, in accordance with \textcite{weiss2015untangling} \end{itemize} \end{frame} \appendix \section{References} \begin{frame}[allowframebreaks] \frametitle{References} \printbibliography \end{frame} \end{document}