import argparse import configparser import logging import pathlib import matplotlib.pyplot as plt import numpy as np parser = argparse.ArgumentParser(description="Post-process swash output") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("-c", "--config", default="config.ini") args = parser.parse_args() logging.basicConfig(level=max((10, 20 - 10 * args.verbose))) log = logging.getLogger("post") log.info("Starting post-processing") config = configparser.ConfigParser() config.read(args.config) inp = pathlib.Path(config.get("post", "inp")) root = pathlib.Path(config.get("swash", "out")) log.info(f"Reading data from '{inp}'") x = np.load(inp.joinpath("x.npy")) t = np.load(inp.joinpath("t.npy")) watl = np.load(inp.joinpath("watl.npy")) # Cospectral calculations x0 = config.getint("post", "x0") arg_x0 = np.abs(x - x0).argmin() w0 = watl[:, arg_x0] cr0 = np.where(np.diff(np.sign(w0)))[0] wave = np.fromiter( ( np.abs( np.max(np.abs(w0[cr0[i - 1] : cr0[i]])) + np.max(np.abs(w0[cr0[i] : cr0[i + 1]])) ) for i in range(1, len(cr0) - 1) ), dtype=np.single, ) i0 = np.argmax(wave) out = pathlib.Path(config.get("post", "out")).joinpath(f"x{x0}") log.info(f"Saving plots in '{out}'") out.mkdir(parents=True, exist_ok=True) fig, ax = plt.subplots() ax.plot(t[cr0[1:-1]] * 1e-3, wave) fig.savefig(out.joinpath("wsize.pdf")) fig2, ax2 = plt.subplots() ax2.plot(t[cr0[i0 - 5] : cr0[i0 + 7]], w0[cr0[i0 - 5] : cr0[i0 + 7]]) fig2.savefig(out.joinpath("maxw.pdf"))