import configparser import pathlib import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.signal as sgl from .read_swash import * config = configparser.ConfigParser() config.read("config.ini") cache = pathlib.Path(config.get("data", "out")) root = pathlib.Path(config.get("swash", "out")) bathy = pd.read_hdf(cache.joinpath("bathy.h5"), "bathy") n = bathy.index.size botl = read_nohead_scalar(root.joinpath("botl.dat"), n) dep = np.maximum(0, read_nohead_scalar(root.joinpath("dep.dat"), n)) vel = read_nohead_vect(root.joinpath("vel.dat"), n) n_t = botl.shape[0] # Cospectral calculations pos_x = n // 10 f = 1 / 0.25 eta = (dep - botl)[n_t // 2 :, pos_x] u = vel[n_t // 2 :, 0, pos_x] phi_eta = np.abs(sgl.csd(eta, eta, f)) phi_u = np.abs(sgl.csd(u, u, f)) phi_eta_u = np.abs(sgl.csd(eta, u, f)) R = np.sqrt( (phi_eta[1] + phi_u[1] - 2 * phi_eta_u[1]) / (phi_eta[1] + phi_u[1] + 2 * phi_eta_u[1]) ) # Plotting fig, (ax_dep, ax_vel) = plt.subplots(2) ax_dep.plot((dep - botl)[:, pos_x], label="dep", color="#0066ff") ax_dep.set(xlabel="t (s)", ylabel="z (m)") ax_dep.autoscale(axis="x", tight=True) ax_dep.grid() ax_vel.plot(vel[:, 0, pos_x], label="vel") ax_vel.set(xlabel="t (s)", ylabel="U (m/s)") ax_vel.autoscale(axis="x", tight=True) ax_vel.grid() fig.tight_layout() fig_r, ax_r = plt.subplots() ax_r.plot(phi_eta[0], R) ax_r.autoscale(axis="x", tight=True) ax_r.set(ylim=(0, 1), xlabel="f (Hz)", ylabel="R") ax_r.grid() out = pathlib.Path(config.get("post", "out")) out.mkdir(exist_ok=True) fig.savefig(out.joinpath(f"{pos_x}.png")) fig_r.savefig(out.joinpath(f"R{pos_x}.png"))