\chapter{OlaFlow} \section{2D Model} A 2Dv model was built on a small domain around the breakwater (\SI{250}{\m} from the crest). A tool that allows mapping the output fields from swash to the initial fields in olaFlow was built. Alpha.water and U fields are mapped from swash to olaFlow. Boundary conditions are set using the output from the swash model. A regular mesh is generated and snapped to the bathymetry (mesh resolution: \SI{.5}{\m}). Simulation is run for 400 seconds using the largest wave from the swash model with the buoy spectrum as an input (\autoref{fig:wave}). \begin{figure} \centering \includegraphics{wave.pdf} \caption{Boundary condition for olaflow model.}\label{fig:wave} \end{figure} Results are plotted using python \autoref{fig:resola}. \begin{figure} \centering \includegraphics{resola.pdf} \caption{Results from olaFlow model.}\label{fig:resola} \end{figure} \subsection{Porosity parameters} Several parameters should be calibrated in order to accurately model the porous media: $a$, $b$ and $c$ are friction parameters in Forcheimer's equation; D50 is the median diameter of the elements constituting the porous media; $p$ is the porosity of the media. 7 cases were run with the values in \autoref{tab:porotest}. \begin{table} \centering \begin{tabular}{cccccc} \toprule \textbf{Case} & $a$ & $b$ & $c$ & D50 (\si{\m}) & $\phi$ \\ \midrule \textbf{0} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{1} & \intersemibold\num{0} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{2} & \intersemibold\num{5000} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{3} & \num{50} & \intersemibold\num{0} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{4} & \num{50} & \intersemibold\num{3.0} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{5} & \num{50} & \num{1.2} & \num{0.34} & \intersemibold\num{2} & \num{0.4} \\ \textbf{6} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \intersemibold\num{0.25} \\ \bottomrule \end{tabular} \caption{Test cases for porosity parameters.}\label{tab:porotest} \end{table} Some results are displayed in \autoref{fig:diff} and \autoref{fig:diff2}. No major differences are noticable between cases (excepted for case 3, where $b=0$). \begin{figure} \centering \includegraphics{diff.pdf} \caption{Tests for porosity parameters; water - air border at \SI{-50}{\m}.}\label{fig:diff} \end{figure} \begin{figure} \centering \includegraphics{diff2.pdf} \caption{Tests for porosity parameters; water - air border at \SI{-20}{\m}.}\label{fig:diff2} \end{figure} Another run with a different value for $b$ was made (\autoref{tab:porotestb}). Results are in \autoref{fig:diff3b}. The value of $b$ seems to have a major effect how wave energy is dissipated / how waves break, as seen in \autoref{fig:diff3b175}. \begin{table} \centering \begin{tabular}{cccccc} \toprule \textbf{Case} & $a$ & $b$ & $c$ & D50 (\si{\m}) & $\phi$ \\ \midrule \textbf{0} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\ \textbf{1} & \num{50} & \intersemibold\num{0} & \num{0.34} & \num{4} & \num{0.4} \\ % 3 \textbf{2} & \num{50} & \intersemibold\num{0.2} & \num{0.34} & \num{4} & \num{0.4} \\ % 3b \bottomrule \end{tabular} \caption{Test cases for porosity parameters.}\label{tab:porotestb} \end{table} \begin{figure} \centering \includegraphics{diff3b.pdf} \caption{Tests for porosity parameters; water - air border at \SI{-20}{\m}.}\label{fig:diff3b} \end{figure} \begin{figure} \centering \includegraphics{diff3b175.pdf} \caption{Tests for porosity parameters; water - air border at \SI{175}{\s}.}\label{fig:diff3b175} \end{figure} \subsection{Turbulence model} A case with the $k-\omega$ SST turbulence model was run to compare with the $k-\varepsilon$ model. Results displayed in \autoref{fig:sst}. Significant differences are found between both models. \begin{figure} \centering \includegraphics{diffsst.pdf} \caption{Case 1: $k-\varepsilon$ model; case 2: $k-\omega$ SST model.}\label{fig:sst} \end{figure}