import argparse import configparser import logging import pathlib import sys import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import scipy.signal as sgl from scipy import fft parser = argparse.ArgumentParser(description="Pre-process time-series") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("-c", "--config", default="config.ini") args = parser.parse_args() logging.basicConfig() log = logging.getLogger("bathy") log.setLevel(max((10, 20 - 10 * args.verbose))) log.info("Starting time-series pre-processing") config = configparser.ConfigParser() config.read(args.config) inp_root = pathlib.Path(config.get("inp", "root"), "cerema/raw") out_root = pathlib.Path(config.get("out", "root")) out_root.mkdir(exist_ok=True) raw_ts = [] #for tsi in sorted(inp_root.glob("2017022817*.raw")): for tsi in sorted(inp_root.glob("*.raw")): raw_ts.append( np.loadtxt( tsi, dtype=[("state", int), ("z", float), ("y", float), ("x", float)], delimiter=",", max_rows=2304, ) ) log.debug(f"Loading <{tsi}>") n = len(raw_ts) raw_ts = np.concatenate(raw_ts) log.debug(f"{raw_ts=}") t0 = np.linspace(0, 30 * 60 * n, 2304 * n, endpoint=False) t = (t0 * 1e3).astype("timedelta64[ms]") + np.datetime64("2017-02-28T00:00") if (errs := np.count_nonzero(raw_ts["state"])) != 0: log.warning(f"{errs} transmission errors!") log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}") # log.debug(f"{t[raw_ts['state'] != 0]}") sos = sgl.butter(1, 0.2, btype="lowpass", fs=2305 / (30 * 60), output="sos") z = sgl.sosfiltfilt(sos, raw_ts["z"]*1e-2) cr0 = np.where(np.diff(np.sign(z)))[0] wave = np.fromiter( ( np.max(np.abs(z[cr0[i - 1] : cr0[i]])) + np.max(np.abs(z[cr0[i] : cr0[i + 1]])) #(np.max(np.abs(raw_ts["z"][cr0[i - 1] : cr0[i]])) + np.max(np.abs(raw_ts["z"][cr0[i] : cr0[i + 1]]))) * 1e-2 for i in range(1, len(cr0) - 1) ), dtype=np.single, ) log.debug(f"{wave=}") log.debug(f"{t=}") # plt.plot(t[cr0[1:-1]], wave) dt = 30 * 60 / 2304 # Mlims = (int(5 / dt), int(30 / dt)) N = t.size // 24 s0 = 2 * dt dj = 0.5 J = 1 / dj * np.log2(N * dt / s0) j = np.arange(0, J) sj = s0 * 2 ** (j * dj) # sj = s0 * np.arange(1, 2 ** (J * dj)) Mw = sj / dt Mlims = sj[[0, -1]] M = (np.abs(sgl.cwt(raw_ts["z"]*1e-2, sgl.morlet2, Mw))/np.std(raw_ts["z"]*1e-2))**2 # M = np.abs(sgl.cwt(z, sgl.morlet, Mw)) v = np.max(np.abs(M)) fig, ax = plt.subplots() # ax2 = ax.twinx() # ax.plot(t0, raw_ts["z"], lw=.5, c="k", alpha=.2) # ax.plot(t0, z, ls="-.", lw=.25, alpha=.2, c="k") st = raw_ts["state"][raw_ts["state"] != 0] c = np.asarray(["g", "b", "r"]) # ax.vlines(t0[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)]) # ax.set(xlabel="t (s)", ylabel="z (cm)") # ax.set(xlim=(17 * 3600 + 20 * 60, 17 * 3600 + 30 * 60)) ax.grid(c="k", alpha=0.2) ax.set(zorder=1, frame_on=False) ax.semilogy() a = [t0[0], t0[-1], *Mlims] # c = ax.imshow(M, extent=a, aspect="auto", cmap="plasma", vmin=0) c = ax.contourf(t, sj, M, cmap="Greys", vmin=0, vmax=v) fig.colorbar(c) H13 = np.quantile(wave, 2 / 3) Hs = 4*np.std(raw_ts["z"]*1e-2) th = 2 * Hs log.info(f"Threshold: {th}m") bigw = np.where(wave > th)[0] ym = 1.1 * np.max(np.abs(z)) nw = wave.size / 2 nlw = bigw.size log.info(f"Number of waves: {nw}") log.info(f"Number of waves >m: {nlw}") log.info(f"Frequency: {nlw/nw:e}") log.info(f"Frequency: 1/{nw/nlw:.0f}") log.info(f"H1/3: {H13}m") log.info(f"Hs: {Hs}") if bigw.size > 32: log.warning(f"Number of large waves: {bigw.size}") sys.exit() for w in bigw: fig, (ax2, ax) = plt.subplots(2, figsize=(15/2.54, 2/3*10/2.54), constrained_layout=True) i0 = cr0[w] - int(1200 / dt) i1 = cr0[w + 2] + int(1200 / dt) # a = [t0[i0], t0[i1], *Mlims] # c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v) ws = np.ptp(raw_ts["z"][cr0[w]:cr0[w+2]]) * 1e-2 log.info(f"Wave [{w}] size: {ws:.2f}m") c = ax2.contourf( t[i0:i1], sj, M[:, i0:i1], cmap="Greys", vmin=0, levels=[1, 2.5, 5, 10, 20, 40], extend="both", ) fig.colorbar(c, ax=ax2, label="NWPS") ax.plot(t[i0:i1], (raw_ts["z"]*1e-2)[i0:i1], c="k", lw=1) #ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.") # ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)]) ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym)) ax2.set(ylabel="T (s)") ax2.grid(c="k", alpha=0.2) ax2.semilogy() ax.grid(c="k", alpha=.2) #ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.") #ax.set(zorder=1, frame_on=False) ax.set(xlabel="t (s)", ylabel="z (m)") ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1) locator = mdates.AutoDateLocator(minticks=3, maxticks=7) formatter = mdates.ConciseDateFormatter(locator) ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(formatter) ax2.xaxis.set_major_locator(locator) ax2.xaxis.set_major_formatter(formatter) ax2.axes.set_xticklabels([]) ax2.set_rasterization_zorder(1.5) fig.savefig(out_root.joinpath(f"wavelet{w}.pdf"), dpi=300) fig.savefig(out_root.joinpath(f"wavelet{w}.png"), dpi=200) #fig, ax = plt.subplots(constrained_layout=True) ## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1) #ax.plot(*sgl.welch(raw_ts["z"], 1 / dt), c="k", alpha=0.2, label="PSD") #ax.plot(1 / sj, N * np.mean(M, axis=1), c="k", label="CWT") ## ax.grid(color="k", alpha=.2) #ax.set(xlabel="T (s)", ylabel="PSD") ## ax2.set(ylabel="Average Wavelet Transform") #ax.set(xlim=1 / Mlims) #ax.legend() plt.show()