import matplotlib.pyplot as plt import numpy as np from numpy import random import scipy.signal as sgl yi = random.normal(size=2**20) yr = np.roll(yi, -(2**10)) figy, axy = plt.subplots() axy.plot(np.arange(2**10, 2**11), yi[2**10 : 2**11]) axy.plot(np.arange(2**10, 2**11), yr[2**10 : 2**11]) figf, axf = plt.subplots() axf.plot(*sgl.welch(yi)) axf.plot(*sgl.welch(yr)) eta = lambda r: yi + r * yr u = lambda r: -yi + r * yr def puv(eta, u): f, phi_eta = sgl.welch(eta) phi_u = sgl.welch(u)[1] phi_eta_u = np.abs(sgl.csd(eta, u)[1].real) return f, np.sqrt( (phi_eta + phi_u - 2 * phi_eta_u) / (phi_eta + phi_u + 2 * phi_eta_u) ) figr, axr = plt.subplots() for r in np.arange(0, 1.1, 0.1): axr.plot(*puv(eta(r), u(r)), c="k") Rn = puv( eta(r) + 0.4 * random.normal(size=2**20), u(r) + 0.4 * random.normal(size=2**20), ) axr.plot( *Rn, c="#ff6600", ) axr.annotate( f"{r=:.1f}", (Rn[0][0], Rn[1][0]), bbox={"boxstyle": "square", "facecolor": "w"} ) axr.grid() axr.autoscale(True, "x", tight=True) axr.set(ylim=(0, 1), ylabel="R", xlabel="f") axr.legend(("No noise", "40% noise"), loc="lower left") figr.savefig("out_r_test.pdf") plt.show()