package rtpconn import ( "errors" "io" "log" "math/bits" "sync" "sync/atomic" "time" "github.com/pion/rtcp" "github.com/pion/rtp" "github.com/pion/webrtc/v3" "github.com/jech/galene/conn" "github.com/jech/galene/estimator" "github.com/jech/galene/group" "github.com/jech/galene/jitter" "github.com/jech/galene/packetcache" "github.com/jech/galene/rtptime" ) type bitrate struct { bitrate uint64 jiffies uint64 } func (br *bitrate) Set(bitrate uint64, now uint64) { atomic.StoreUint64(&br.bitrate, bitrate) atomic.StoreUint64(&br.jiffies, now) } func (br *bitrate) Get(now uint64) uint64 { ts := atomic.LoadUint64(&br.jiffies) if now < ts || now-ts > receiverReportTimeout { return ^uint64(0) } return atomic.LoadUint64(&br.bitrate) } type receiverStats struct { loss uint32 jitter uint32 jiffies uint64 } func (s *receiverStats) Set(loss uint8, jitter uint32, now uint64) { atomic.StoreUint32(&s.loss, uint32(loss)) atomic.StoreUint32(&s.jitter, jitter) atomic.StoreUint64(&s.jiffies, now) } func (s *receiverStats) Get(now uint64) (uint8, uint32) { ts := atomic.LoadUint64(&s.jiffies) if now < ts || now > ts+receiverReportTimeout { return 0, 0 } return uint8(atomic.LoadUint32(&s.loss)), atomic.LoadUint32(&s.jitter) } const receiverReportTimeout = 8 * rtptime.JiffiesPerSec type iceConnection interface { addICECandidate(candidate *webrtc.ICECandidateInit) error flushICECandidates() error } type downTrackAtomics struct { rtt uint64 sr uint64 srNTP uint64 remoteNTP uint64 remoteRTP uint32 } type rtpDownTrack struct { track *webrtc.TrackLocalStaticRTP remote conn.UpTrack ssrc webrtc.SSRC maxBitrate *bitrate rate *estimator.Estimator stats *receiverStats atomics *downTrackAtomics cname atomic.Value } func (down *rtpDownTrack) WriteRTP(packet *rtp.Packet) error { return down.track.WriteRTP(packet) } func (down *rtpDownTrack) Accumulate(bytes uint32) { down.rate.Accumulate(bytes) } func (down *rtpDownTrack) SetTimeOffset(ntp uint64, rtp uint32) { atomic.StoreUint64(&down.atomics.remoteNTP, ntp) atomic.StoreUint32(&down.atomics.remoteRTP, rtp) } func (down *rtpDownTrack) getTimeOffset() (uint64, uint32) { ntp := atomic.LoadUint64(&down.atomics.remoteNTP) rtp := atomic.LoadUint32(&down.atomics.remoteRTP) return ntp, rtp } func (down *rtpDownTrack) getRTT() uint64 { return atomic.LoadUint64(&down.atomics.rtt) } func (down *rtpDownTrack) setRTT(rtt uint64) { atomic.StoreUint64(&down.atomics.rtt, rtt) } func (down *rtpDownTrack) getSRTime() (uint64, uint64) { tm := atomic.LoadUint64(&down.atomics.sr) ntp := atomic.LoadUint64(&down.atomics.srNTP) return tm, ntp } func (down *rtpDownTrack) setSRTime(tm uint64, ntp uint64) { atomic.StoreUint64(&down.atomics.sr, tm) atomic.StoreUint64(&down.atomics.srNTP, ntp) } func (down *rtpDownTrack) SetCname(cname string) { down.cname.Store(cname) } type rtpDownConnection struct { id string pc *webrtc.PeerConnection remote conn.Up tracks []*rtpDownTrack maxREMBBitrate *bitrate iceCandidates []*webrtc.ICECandidateInit } func newDownConn(c group.Client, id string, remote conn.Up) (*rtpDownConnection, error) { api := group.APIFromCodecs(remote.Codecs()) pc, err := api.NewPeerConnection(group.IceConfiguration()) if err != nil { return nil, err } pc.OnTrack(func(remote *webrtc.TrackRemote, receiver *webrtc.RTPReceiver) { log.Printf("Got track on downstream connection") }) conn := &rtpDownConnection{ id: id, pc: pc, remote: remote, maxREMBBitrate: new(bitrate), } return conn, nil } func (down *rtpDownConnection) GetMaxBitrate(now uint64) uint64 { rate := down.maxREMBBitrate.Get(now) var trackRate uint64 for _, t := range down.tracks { r := t.maxBitrate.Get(now) if r == ^uint64(0) { if t.track.Kind() == webrtc.RTPCodecTypeAudio { r = 128 * 1024 } else { r = 512 * 1024 } } trackRate += r } if trackRate < rate { return trackRate } return rate } func (down *rtpDownConnection) addICECandidate(candidate *webrtc.ICECandidateInit) error { if down.pc.RemoteDescription() != nil { return down.pc.AddICECandidate(*candidate) } down.iceCandidates = append(down.iceCandidates, candidate) return nil } func flushICECandidates(pc *webrtc.PeerConnection, candidates []*webrtc.ICECandidateInit) error { if pc.RemoteDescription() == nil { return errors.New("flushICECandidates called in bad state") } var err error for _, candidate := range candidates { err2 := pc.AddICECandidate(*candidate) if err == nil { err = err2 } } return err } func (down *rtpDownConnection) flushICECandidates() error { err := flushICECandidates(down.pc, down.iceCandidates) down.iceCandidates = nil return err } type upTrackAtomics struct { lastPLI uint64 lastFIR uint64 firSeqno uint32 } type rtpUpTrack struct { track *webrtc.TrackRemote label string rate *estimator.Estimator cache *packetcache.Cache jitter *jitter.Estimator atomics *upTrackAtomics cname atomic.Value localCh chan localTrackAction readerDone chan struct{} mu sync.Mutex srTime uint64 srNTPTime uint64 srRTPTime uint32 local []conn.DownTrack bufferedNACKs []uint16 } type localTrackAction struct { add bool track conn.DownTrack } func (up *rtpUpTrack) notifyLocal(add bool, track conn.DownTrack) { select { case up.localCh <- localTrackAction{add, track}: case <-up.readerDone: } } func (up *rtpUpTrack) AddLocal(local conn.DownTrack) error { up.mu.Lock() defer up.mu.Unlock() for _, t := range up.local { if t == local { return nil } } up.local = append(up.local, local) // do this asynchronously, to avoid deadlocks when multiple // clients call this simultaneously. go up.notifyLocal(true, local) return nil } func (up *rtpUpTrack) DelLocal(local conn.DownTrack) bool { up.mu.Lock() defer up.mu.Unlock() for i, l := range up.local { if l == local { up.local = append(up.local[:i], up.local[i+1:]...) // do this asynchronously, to avoid deadlocking when // multiple clients call this simultaneously. go up.notifyLocal(false, l) return true } } return false } func (up *rtpUpTrack) getLocal() []conn.DownTrack { up.mu.Lock() defer up.mu.Unlock() local := make([]conn.DownTrack, len(up.local)) copy(local, up.local) return local } func (up *rtpUpTrack) GetRTP(seqno uint16, result []byte) uint16 { return up.cache.Get(seqno, result) } func (up *rtpUpTrack) Label() string { return up.label } func (up *rtpUpTrack) Codec() webrtc.RTPCodecCapability { return up.track.Codec().RTPCodecCapability } func (up *rtpUpTrack) hasRtcpFb(tpe, parameter string) bool { for _, fb := range up.track.Codec().RTCPFeedback { if fb.Type == tpe && fb.Parameter == parameter { return true } } return false } type rtpUpConnection struct { id string label string pc *webrtc.PeerConnection labels map[string]string iceCandidates []*webrtc.ICECandidateInit mu sync.Mutex pushed bool tracks []*rtpUpTrack local []conn.Down } func (up *rtpUpConnection) getTracks() []*rtpUpTrack { up.mu.Lock() defer up.mu.Unlock() tracks := make([]*rtpUpTrack, len(up.tracks)) copy(tracks, up.tracks) return tracks } func (up *rtpUpConnection) Id() string { return up.id } func (up *rtpUpConnection) Label() string { return up.label } func (up *rtpUpConnection) Codecs() []webrtc.RTPCodecCapability { up.mu.Lock() defer up.mu.Unlock() codecs := make([]webrtc.RTPCodecCapability, len(up.tracks)) for i := range up.tracks { codecs[i] = up.tracks[i].Codec() } return codecs } func (up *rtpUpConnection) AddLocal(local conn.Down) error { up.mu.Lock() defer up.mu.Unlock() for _, t := range up.local { if t == local { return nil } } up.local = append(up.local, local) return nil } func (up *rtpUpConnection) DelLocal(local conn.Down) bool { up.mu.Lock() defer up.mu.Unlock() for i, l := range up.local { if l == local { up.local = append(up.local[:i], up.local[i+1:]...) return true } } return false } func (up *rtpUpConnection) getLocal() []conn.Down { up.mu.Lock() defer up.mu.Unlock() local := make([]conn.Down, len(up.local)) copy(local, up.local) return local } func (up *rtpUpConnection) addICECandidate(candidate *webrtc.ICECandidateInit) error { if up.pc.RemoteDescription() != nil { return up.pc.AddICECandidate(*candidate) } up.iceCandidates = append(up.iceCandidates, candidate) return nil } func (up *rtpUpConnection) flushICECandidates() error { err := flushICECandidates(up.pc, up.iceCandidates) up.iceCandidates = nil return err } func getTrackMid(pc *webrtc.PeerConnection, track *webrtc.TrackRemote) string { for _, t := range pc.GetTransceivers() { if t.Receiver() != nil && t.Receiver().Track() == track { return t.Mid() } } return "" } // called locked func (up *rtpUpConnection) complete() bool { for mid := range up.labels { found := false for _, t := range up.tracks { m := getTrackMid(up.pc, t.track) if m == mid { found = true break } } if !found { return false } } return true } // pushConnNow pushes a connection to all of the clients in a group func pushConnNow(up *rtpUpConnection, g *group.Group, cs []group.Client) { up.mu.Lock() up.pushed = true tracks := make([]conn.UpTrack, len(up.tracks)) for i, t := range up.tracks { tracks[i] = t } up.mu.Unlock() for _, c := range cs { c.PushConn(g, up.id, up, tracks, up.label) } } // pushConn schedules a call to pushConnNow func pushConn(up *rtpUpConnection, g *group.Group, cs []group.Client) { if up.complete() { pushConnNow(up, g, cs) return } up.mu.Lock() up.pushed = false up.mu.Unlock() go func(g *group.Group, cs []group.Client) { time.Sleep(300 * time.Millisecond) up.mu.Lock() pushed := up.pushed up.pushed = true up.mu.Unlock() if !pushed { pushConnNow(up, g, cs) } }(g, cs) } func newUpConn(c group.Client, id string, labels map[string]string) (*rtpUpConnection, error) { pc, err := c.Group().API().NewPeerConnection(group.IceConfiguration()) if err != nil { return nil, err } _, err = pc.AddTransceiverFromKind(webrtc.RTPCodecTypeAudio, webrtc.RtpTransceiverInit{ Direction: webrtc.RTPTransceiverDirectionRecvonly, }, ) if err != nil { pc.Close() return nil, err } _, err = pc.AddTransceiverFromKind(webrtc.RTPCodecTypeVideo, webrtc.RtpTransceiverInit{ Direction: webrtc.RTPTransceiverDirectionRecvonly, }, ) if err != nil { pc.Close() return nil, err } up := &rtpUpConnection{id: id, pc: pc, labels: labels} pc.OnTrack(func(remote *webrtc.TrackRemote, receiver *webrtc.RTPReceiver) { up.mu.Lock() mid := getTrackMid(pc, remote) if mid == "" { log.Printf("Couldn't get track's mid") return } label, ok := up.labels[mid] if !ok { log.Printf("Couldn't get track's label") isvideo := remote.Kind() == webrtc.RTPCodecTypeVideo if isvideo { label = "video" } else { label = "audio" } } track := &rtpUpTrack{ track: remote, label: label, cache: packetcache.New(minPacketCache(remote)), rate: estimator.New(time.Second), jitter: jitter.New(remote.Codec().ClockRate), atomics: &upTrackAtomics{}, localCh: make(chan localTrackAction, 2), readerDone: make(chan struct{}), } up.tracks = append(up.tracks, track) go readLoop(up, track) go rtcpUpListener(up, track, receiver) up.mu.Unlock() pushConn(up, c.Group(), c.Group().GetClients(c)) }) pushConn(up, c.Group(), c.Group().GetClients(c)) go rtcpUpSender(up) return up, nil } var ErrUnsupportedFeedback = errors.New("unsupported feedback type") var ErrRateLimited = errors.New("rate limited") func (up *rtpUpConnection) sendPLI(track *rtpUpTrack) error { if !track.hasRtcpFb("nack", "pli") { return ErrUnsupportedFeedback } last := atomic.LoadUint64(&track.atomics.lastPLI) now := rtptime.Jiffies() if now >= last && now-last < rtptime.JiffiesPerSec/2 { return ErrRateLimited } atomic.StoreUint64(&track.atomics.lastPLI, now) return sendPLI(up.pc, track.track.SSRC()) } func sendPLI(pc *webrtc.PeerConnection, ssrc webrtc.SSRC) error { return pc.WriteRTCP([]rtcp.Packet{ &rtcp.PictureLossIndication{MediaSSRC: uint32(ssrc)}, }) } func (up *rtpUpConnection) sendFIR(track *rtpUpTrack, increment bool) error { // we need to reliably increment the seqno, even if we are going // to drop the packet due to rate limiting. var seqno uint8 if increment { seqno = uint8(atomic.AddUint32(&track.atomics.firSeqno, 1) & 0xFF) } else { seqno = uint8(atomic.LoadUint32(&track.atomics.firSeqno) & 0xFF) } if !track.hasRtcpFb("ccm", "fir") { return ErrUnsupportedFeedback } last := atomic.LoadUint64(&track.atomics.lastFIR) now := rtptime.Jiffies() if now >= last && now-last < rtptime.JiffiesPerSec/2 { return ErrRateLimited } atomic.StoreUint64(&track.atomics.lastFIR, now) return sendFIR(up.pc, track.track.SSRC(), seqno) } func sendFIR(pc *webrtc.PeerConnection, ssrc webrtc.SSRC, seqno uint8) error { return pc.WriteRTCP([]rtcp.Packet{ &rtcp.FullIntraRequest{ FIR: []rtcp.FIREntry{ { SSRC: uint32(ssrc), SequenceNumber: seqno, }, }, }, }) } func (up *rtpUpConnection) sendNACK(track *rtpUpTrack, first uint16, bitmap uint16) error { if !track.hasRtcpFb("nack", "") { return ErrUnsupportedFeedback } err := sendNACKs(up.pc, track.track.SSRC(), []rtcp.NackPair{{first, rtcp.PacketBitmap(bitmap)}}, ) if err == nil { track.cache.Expect(1 + bits.OnesCount16(bitmap)) } return err } func (up *rtpUpConnection) sendNACKs(track *rtpUpTrack, seqnos []uint16) error { count := len(seqnos) if count == 0 { return nil } if !track.hasRtcpFb("nack", "") { return ErrUnsupportedFeedback } var nacks []rtcp.NackPair for len(seqnos) > 0 { if len(nacks) >= 240 { log.Printf("NACK: packet overflow") break } var f, b uint16 f, b, seqnos = packetcache.ToBitmap(seqnos) nacks = append(nacks, rtcp.NackPair{f, rtcp.PacketBitmap(b)}) } err := sendNACKs(up.pc, track.track.SSRC(), nacks) if err == nil { track.cache.Expect(count) } return err } func sendNACKs(pc *webrtc.PeerConnection, ssrc webrtc.SSRC, nacks []rtcp.NackPair) error { packet := rtcp.Packet( &rtcp.TransportLayerNack{ MediaSSRC: uint32(ssrc), Nacks: nacks, }, ) return pc.WriteRTCP([]rtcp.Packet{packet}) } func gotNACK(conn *rtpDownConnection, track *rtpDownTrack, p *rtcp.TransportLayerNack) { var unhandled []uint16 var packet rtp.Packet buf := make([]byte, packetcache.BufSize) for _, nack := range p.Nacks { nack.Range(func(seqno uint16) bool { l := track.remote.GetRTP(seqno, buf) if l == 0 { unhandled = append(unhandled, seqno) return true } err := packet.Unmarshal(buf[:l]) if err != nil { return true } err = track.track.WriteRTP(&packet) if err != nil { log.Printf("WriteRTP: %v", err) return false } track.rate.Accumulate(uint32(l)) return true }) } if len(unhandled) == 0 { return } track.remote.Nack(conn.remote, unhandled) } func (track *rtpUpTrack) Nack(conn conn.Up, nacks []uint16) error { track.mu.Lock() defer track.mu.Unlock() doit := len(track.bufferedNACKs) == 0 outer: for _, nack := range nacks { for _, seqno := range track.bufferedNACKs { if seqno == nack { continue outer } } track.bufferedNACKs = append(track.bufferedNACKs, nack) } if doit { up, ok := conn.(*rtpUpConnection) if !ok { log.Printf("Nack: unexpected type %T", conn) return errors.New("unexpected connection type") } go nackWriter(up, track) } return nil } func rtcpUpListener(conn *rtpUpConnection, track *rtpUpTrack, r *webrtc.RTPReceiver) { buf := make([]byte, 1500) for { firstSR := false n, _, err := r.Read(buf) if err != nil { if err != io.EOF { log.Printf("Read RTCP: %v", err) } return } ps, err := rtcp.Unmarshal(buf[:n]) if err != nil { log.Printf("Unmarshal RTCP: %v", err) continue } jiffies := rtptime.Jiffies() for _, p := range ps { local := track.getLocal() switch p := p.(type) { case *rtcp.SenderReport: track.mu.Lock() if track.srTime == 0 { firstSR = true } track.srTime = jiffies track.srNTPTime = p.NTPTime track.srRTPTime = p.RTPTime track.mu.Unlock() for _, l := range local { l.SetTimeOffset(p.NTPTime, p.RTPTime) } case *rtcp.SourceDescription: for _, c := range p.Chunks { if c.Source != uint32(track.track.SSRC()) { continue } for _, i := range c.Items { if i.Type != rtcp.SDESCNAME { continue } track.cname.Store(i.Text) for _, l := range local { l.SetCname(i.Text) } } } } } if firstSR { // this is the first SR we got for at least one track, // quickly propagate the time offsets downstream local := conn.getLocal() for _, l := range local { l, ok := l.(*rtpDownConnection) if ok { err := sendSR(l) if err != nil { log.Printf("sendSR: %v", err) } } } } } } func sendUpRTCP(conn *rtpUpConnection) error { conn.mu.Lock() defer conn.mu.Unlock() if len(conn.tracks) == 0 { state := conn.pc.ConnectionState() if state == webrtc.PeerConnectionStateClosed { return io.ErrClosedPipe } return nil } now := rtptime.Jiffies() reports := make([]rtcp.ReceptionReport, 0, len(conn.tracks)) for _, t := range conn.tracks { updateUpTrack(t) expected, lost, totalLost, eseqno := t.cache.GetStats(true) if expected == 0 { expected = 1 } if lost >= expected { lost = expected - 1 } t.mu.Lock() srTime := t.srTime srNTPTime := t.srNTPTime t.mu.Unlock() var delay uint64 if srTime != 0 { delay = (now - srTime) / (rtptime.JiffiesPerSec / 0x10000) } reports = append(reports, rtcp.ReceptionReport{ SSRC: uint32(t.track.SSRC()), FractionLost: uint8((lost * 256) / expected), TotalLost: totalLost, LastSequenceNumber: eseqno, Jitter: t.jitter.Jitter(), LastSenderReport: uint32(srNTPTime >> 16), Delay: uint32(delay), }) } packets := []rtcp.Packet{ &rtcp.ReceiverReport{ Reports: reports, }, } rate := ^uint64(0) for _, l := range conn.local { r := l.GetMaxBitrate(now) if r < rate { rate = r } } if rate < group.MinBitrate { rate = group.MinBitrate } var ssrcs []uint32 for _, t := range conn.tracks { if t.hasRtcpFb("goog-remb", "") { continue } ssrcs = append(ssrcs, uint32(t.track.SSRC())) } if len(ssrcs) > 0 { packets = append(packets, &rtcp.ReceiverEstimatedMaximumBitrate{ Bitrate: rate, SSRCs: ssrcs, }, ) } return conn.pc.WriteRTCP(packets) } func rtcpUpSender(conn *rtpUpConnection) { for { time.Sleep(time.Second) err := sendUpRTCP(conn) if err != nil { if err == io.EOF || err == io.ErrClosedPipe { return } log.Printf("sendRR: %v", err) } } } func sendSR(conn *rtpDownConnection) error { // since this is only called after all tracks have been created, // there is no need for locking. packets := make([]rtcp.Packet, 0, len(conn.tracks)) now := time.Now() nowNTP := rtptime.TimeToNTP(now) jiffies := rtptime.TimeToJiffies(now) for _, t := range conn.tracks { clockrate := t.track.Codec().ClockRate var nowRTP uint32 remoteNTP, remoteRTP := t.getTimeOffset() if remoteNTP != 0 { srTime := rtptime.NTPToTime(remoteNTP) d := now.Sub(srTime) if d > 0 && d < time.Hour { delay := rtptime.FromDuration( d, clockrate, ) nowRTP = remoteRTP + uint32(delay) } p, b := t.rate.Totals() packets = append(packets, &rtcp.SenderReport{ SSRC: uint32(t.ssrc), NTPTime: nowNTP, RTPTime: nowRTP, PacketCount: p, OctetCount: b, }) t.setSRTime(jiffies, nowNTP) } cname, ok := t.cname.Load().(string) if ok && cname != "" { item := rtcp.SourceDescriptionItem{ Type: rtcp.SDESCNAME, Text: cname, } packets = append(packets, &rtcp.SourceDescription{ Chunks: []rtcp.SourceDescriptionChunk{ { Source: uint32(t.ssrc), Items: []rtcp.SourceDescriptionItem{item}, }, }, }, ) } } if len(packets) == 0 { state := conn.pc.ConnectionState() if state == webrtc.PeerConnectionStateClosed { return io.ErrClosedPipe } return nil } return conn.pc.WriteRTCP(packets) } func rtcpDownSender(conn *rtpDownConnection) { for { time.Sleep(time.Second) err := sendSR(conn) if err != nil { if err == io.EOF || err == io.ErrClosedPipe { return } log.Printf("sendSR: %v", err) } } } const ( minLossRate = 9600 initLossRate = 512 * 1000 maxLossRate = 1 << 30 ) func (track *rtpDownTrack) updateRate(loss uint8, now uint64) { rate := track.maxBitrate.Get(now) if rate < minLossRate || rate > maxLossRate { // no recent feedback, reset rate = initLossRate } if loss < 5 { // if our actual rate is low, then we're not probing the // bottleneck r, _ := track.rate.Estimate() actual := 8 * uint64(r) if actual >= (rate*7)/8 { // loss < 0.02, multiply by 1.05 rate = rate * 269 / 256 if rate > maxLossRate { rate = maxLossRate } } } else if loss > 25 { // loss > 0.1, multiply by (1 - loss/2) rate = rate * (512 - uint64(loss)) / 512 if rate < minLossRate { rate = minLossRate } } // update unconditionally, to set the timestamp track.maxBitrate.Set(rate, now) } func rtcpDownListener(conn *rtpDownConnection, track *rtpDownTrack, s *webrtc.RTPSender) { var gotFir bool lastFirSeqno := uint8(0) buf := make([]byte, 1500) for { n, _, err := s.Read(buf) if err != nil { if err != io.EOF { log.Printf("Read RTCP: %v", err) } return } ps, err := rtcp.Unmarshal(buf[:n]) if err != nil { log.Printf("Unmarshal RTCP: %v", err) continue } jiffies := rtptime.Jiffies() for _, p := range ps { switch p := p.(type) { case *rtcp.PictureLossIndication: remote, ok := conn.remote.(*rtpUpConnection) if !ok { continue } rt, ok := track.remote.(*rtpUpTrack) if !ok { continue } err := remote.sendPLI(rt) if err != nil && err != ErrRateLimited { log.Printf("sendPLI: %v", err) } case *rtcp.FullIntraRequest: found := false var seqno uint8 for _, entry := range p.FIR { if entry.SSRC == uint32(track.ssrc) { found = true seqno = entry.SequenceNumber break } } if !found { log.Printf("Misdirected FIR") continue } increment := true if gotFir { increment = seqno != lastFirSeqno } gotFir = true lastFirSeqno = seqno remote, ok := conn.remote.(*rtpUpConnection) if !ok { continue } rt, ok := track.remote.(*rtpUpTrack) if !ok { continue } err := remote.sendFIR(rt, increment) if err == ErrUnsupportedFeedback { err := remote.sendPLI(rt) if err != nil && err != ErrRateLimited { log.Printf("sendPLI: %v", err) } } else if err != nil && err != ErrRateLimited { log.Printf("sendFIR: %v", err) } case *rtcp.ReceiverEstimatedMaximumBitrate: conn.maxREMBBitrate.Set(p.Bitrate, jiffies) case *rtcp.ReceiverReport: for _, r := range p.Reports { if r.SSRC == uint32(track.ssrc) { handleReport(track, r, jiffies) } } case *rtcp.SenderReport: for _, r := range p.Reports { if r.SSRC == uint32(track.ssrc) { handleReport(track, r, jiffies) } } case *rtcp.TransportLayerNack: gotNACK(conn, track, p) } } } } func handleReport(track *rtpDownTrack, report rtcp.ReceptionReport, jiffies uint64) { track.stats.Set(report.FractionLost, report.Jitter, jiffies) track.updateRate(report.FractionLost, jiffies) if report.LastSenderReport != 0 { jiffies := rtptime.Jiffies() srTime, srNTPTime := track.getSRTime() if jiffies < srTime || jiffies-srTime > 8*rtptime.JiffiesPerSec { return } if report.LastSenderReport == uint32(srNTPTime>>16) { delay := uint64(report.Delay) * (rtptime.JiffiesPerSec / 0x10000) if delay > jiffies-srTime { return } rtt := (jiffies - srTime) - delay oldrtt := track.getRTT() newrtt := rtt if oldrtt > 0 { newrtt = (3*oldrtt + rtt) / 4 } track.setRTT(newrtt) } } } func minPacketCache(track *webrtc.TrackRemote) int { if track.Kind() == webrtc.RTPCodecTypeVideo { return 128 } return 24 } func updateUpTrack(track *rtpUpTrack) { now := rtptime.Jiffies() clockrate := track.track.Codec().ClockRate local := track.getLocal() var maxrto uint64 for _, l := range local { ll, ok := l.(*rtpDownTrack) if ok { _, j := ll.stats.Get(now) jitter := uint64(j) * (rtptime.JiffiesPerSec / uint64(clockrate)) rtt := ll.getRTT() rto := rtt + 4*jitter if rto > maxrto { maxrto = rto } } } _, r := track.rate.Estimate() packets := int((uint64(r) * maxrto * 4) / rtptime.JiffiesPerSec) min := minPacketCache(track.track) if packets < min { packets = min } if packets > 1024 { packets = 1024 } track.cache.ResizeCond(packets) }