Refactor signal visualizations to use Matplotlib, removing Altair dependencies and updating figure configurations for clarity

This commit is contained in:
Edgar P. Burkhart 2025-02-27 18:33:19 +01:00
parent b032bb8610
commit bc9d8904e2
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
2 changed files with 73 additions and 88 deletions

View file

@ -43,7 +43,7 @@ t = np.arange(n+1)
s = rng.choice([0, 1], n)
fig, ax = plt.subplots()
ax.stairs(s, t, lw=3)
ax.stairs(s, t, lw=3, baseline=None)
ax.set(
xlim=(0, n),
ylim=(-.5, 1.5),
@ -88,7 +88,6 @@ lhs = (qmc.LatinHypercube(d=n-2, rng=rng).random(1)[0] - .5) * t_max/n
t = t_base + np.concatenate(([0], lhs, [0]))
t = t_base
s = 5 * rng.random(n)
s[-1] = s[-2]
t_interp = np.linspace(0, t_max, 1024)
s_interp = np.clip(CubicSpline(t, s)(t_interp), 0, 5)
@ -127,7 +126,7 @@ t = np.arange(n+1)
s = rng.integers(0, 16, n)
fig, ax = plt.subplots()
ax.stairs(s, t, lw=3)
ax.stairs(s, t, lw=3, baseline=None)
ax.set(
xlim=(0, n),
ylim=(-.5, 16.5),
@ -136,18 +135,6 @@ ax.set(
)
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
# alt.Chart(
# data
# ).mark_line(
# interpolate="step-after",
# strokeWidth=3,
# ).encode(
# alt.X("t:Q").axis(title="Temps (s)").scale(domain=(0,n)),
# alt.Y("s:Q", axis=alt.Axis(title="Signal numérique", values=np.arange(0, 16))).# scale(domain=(0,15)),
# ).properties(
# width="container",
# height=200,
# )
```
Exemple de signal numérique
````

View file

@ -37,69 +37,64 @@ La **caractéristique** du CAN est la courbe représentant la valeur numérique
:label: fig:exemple-can
```{code-cell} python
:tags: [remove-input]
import altair as alt
import matplotlib.pyplot as plt
from matplotlib import ticker
import numpy as np
import pandas as pd
from scipy import interpolate
from scipy.interpolate import CubicSpline
from scipy.stats import qmc
rng = np.random.default_rng(25)
rng = np.random.default_rng(50)
n = 20
t_max = 16
t_max = 8
n_interp = t_max * 100 + 1
T = np.linspace(0, t_max, 1601)
y = np.clip(
interpolate.BSpline(np.linspace(0, t_max, n), 5 * rng.random(n), 2)(T),
0,
5,
t_base = np.linspace(0, t_max, n)
lhs = (qmc.LatinHypercube(d=n-2, rng=rng).random(1)[0] - .5) * t_max/n
t = t_base + np.concatenate(([0], lhs, [0]))
t = t_base
s = 5 * rng.random(n)
t_interp = np.linspace(0, t_max, n_interp)
s_interp = np.clip(CubicSpline(t, s)(t_interp), 0, 5)
s_n = np.full_like(t_interp[::50], np.nan)
s_n = np.floor(s_interp[::50] * 8 / 5)
s_n[s_n == 8] = 7
fig, ax = plt.subplots()
ax2 = ax.twinx()
ax.plot(t_interp, s_interp, lw=3)
ax2.scatter(t_interp[::50], s_n, color="C1")
ax.grid(False, axis="y")
ax.grid(True, axis="x", which="both")
ax2.grid(True)
ax.set(
xlim=(0, t_max),
ylim=(-.5, 5.5),
xlabel="Temps (s)",
)
y_n = np.full([1601], np.nan)
y_n[::50] = np.floor(y[::50] * 8 / 5)
y_n[y_n == 8] = 7
data = pd.DataFrame({
"t": T,
"s": y,
"s_n": y_n,
})
base = alt.Chart(
data
).encode(
alt.X("t:Q").axis(title="Temps (s)").scale(domain=(0,t_max)),
ax.set_ylabel("Signal analogique (V)", color="C0")
ax2.set(
ylim=(-8/5*.5, 8/5*5.5),
)
ax2.set_ylabel("Signal numérique", color="C1")
ch = base.mark_line(
interpolate="basis",
strokeWidth=3,
color="#6666cc",
).encode(
alt.Y("s:Q", axis=alt.Axis(title="Signal analogique", titleColor="#6666cc")).scale(domain=(0,5)),
)
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(.5))
ax2.set_yticks(np.arange(9), np.concatenate((np.arange(8), [""])))
ch_n = base.mark_point(
filled=True,
color="#ff6600",
).encode(
alt.Y(
"s_n:Q",
axis=alt.Axis(
title="Signal numérisé",
titleColor="#ff6600",
values=np.arange(8),
)
).scale(domain=(0,8)),
)
alt.layer(ch_n, ch).resolve_scale(
y="independent",
).properties(
width="container",
height=200,
)
arr = ax2.annotate("", xy=(0, 0), xytext=(0.5, 0), arrowprops=dict(arrowstyle="<->"))
ax2.annotate("$T_e$", (0.5, 1), xycoords=arr, ha="center", va="bottom")
arr2 = ax2.annotate("", xy=(0.5, 0), xytext=(0.5, 1), arrowprops=dict(arrowstyle="<->"))
ax2.annotate("$q$", (1, 0.5), xycoords=arr2, ha="left", va="center")
arr3 = ax2.annotate("", xy=(1, 0), xytext=(1, 8), arrowprops=dict(arrowstyle="<->"))
ax2.annotate("$V_{pe}$", (1, 0.5), xycoords=arr3, ha="left", va="center")
```
Signal analogique et signal numérisé.
````
@ -108,34 +103,37 @@ Signal analogique et signal numérisé.
:label: fig:carac-can
```{code-cell} python
:tags: [remove-input]
import altair as alt
import matplotlib.pyplot as plt
from matplotlib import ticker
import numpy as np
import pandas as pd
from scipy import interpolate
N = 8
s_n = np.arange(N+1)
s_n[-1] = s_n[-2]
data = pd.DataFrame({
"s_n": s_n,
"s_a": np.linspace(0, 5, N+1),
})
s_n = np.arange(N)
s_a = np.linspace(0, 5, N+1)
alt.Chart(
data
).mark_line(
interpolate="step-after",
strokeWidth=3,
color="#ff6600",
).encode(
alt.X("s_a:Q").axis(title="Signal Analogique").scale(domain=(0,5)),
alt.Y("s_n:Q", axis=alt.Axis(title="Signal numérique", values=np.arange(N))).scale(domain=(0,N)),
).properties(
width=200,
height=200,
fig, ax = plt.subplots()
ax.stairs(s_n, s_a, color="C1", lw=3, baseline=None)
ax.set(
xlim=(0, 5),
ylim=(-1, N),
yticks=s_n,
xlabel="Signal analogique (V)",
ylabel="Signal numérique",
)
ax.set_xticks(s_a, [f"{v:.3f}" for v in s_a], rotation=45, ha="right", rotation_mode="anchor")
ax.set_aspect(5/8, 'box')
arr4 = ax.annotate(
"", xy=(s_a[0], 0), xytext=(s_a[1], 0), arrowprops=dict(arrowstyle="<->")
)
ax.annotate("$q$", (0.5, 1), xycoords=arr4, ha="center", va="bottom")
arr5 = ax.annotate(
"", xy=(s_a[0], 1.5), xytext=(s_a[-1], 1.5), arrowprops=dict(arrowstyle="<->")
)
ax.annotate("$V_{pe}$", (0.5, 1), xycoords=arr5, ha="center", va="bottom")
```
Caractéristique du CAN.
````