Refactor signal visualizations to use Matplotlib, removing Altair dependencies and updating figure configurations for clarity
This commit is contained in:
parent
b032bb8610
commit
bc9d8904e2
2 changed files with 73 additions and 88 deletions
cours/SIN
|
@ -43,7 +43,7 @@ t = np.arange(n+1)
|
|||
s = rng.choice([0, 1], n)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.stairs(s, t, lw=3)
|
||||
ax.stairs(s, t, lw=3, baseline=None)
|
||||
ax.set(
|
||||
xlim=(0, n),
|
||||
ylim=(-.5, 1.5),
|
||||
|
@ -88,7 +88,6 @@ lhs = (qmc.LatinHypercube(d=n-2, rng=rng).random(1)[0] - .5) * t_max/n
|
|||
t = t_base + np.concatenate(([0], lhs, [0]))
|
||||
t = t_base
|
||||
s = 5 * rng.random(n)
|
||||
s[-1] = s[-2]
|
||||
|
||||
t_interp = np.linspace(0, t_max, 1024)
|
||||
s_interp = np.clip(CubicSpline(t, s)(t_interp), 0, 5)
|
||||
|
@ -127,7 +126,7 @@ t = np.arange(n+1)
|
|||
s = rng.integers(0, 16, n)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.stairs(s, t, lw=3)
|
||||
ax.stairs(s, t, lw=3, baseline=None)
|
||||
ax.set(
|
||||
xlim=(0, n),
|
||||
ylim=(-.5, 16.5),
|
||||
|
@ -136,18 +135,6 @@ ax.set(
|
|||
)
|
||||
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
|
||||
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
|
||||
# alt.Chart(
|
||||
# data
|
||||
# ).mark_line(
|
||||
# interpolate="step-after",
|
||||
# strokeWidth=3,
|
||||
# ).encode(
|
||||
# alt.X("t:Q").axis(title="Temps (s)").scale(domain=(0,n)),
|
||||
# alt.Y("s:Q", axis=alt.Axis(title="Signal numérique", values=np.arange(0, 16))).# scale(domain=(0,15)),
|
||||
# ).properties(
|
||||
# width="container",
|
||||
# height=200,
|
||||
# )
|
||||
```
|
||||
Exemple de signal numérique
|
||||
````
|
|
@ -37,69 +37,64 @@ La **caractéristique** du CAN est la courbe représentant la valeur numérique
|
|||
:label: fig:exemple-can
|
||||
```{code-cell} python
|
||||
:tags: [remove-input]
|
||||
import altair as alt
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import ticker
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import interpolate
|
||||
from scipy.interpolate import CubicSpline
|
||||
from scipy.stats import qmc
|
||||
|
||||
rng = np.random.default_rng(25)
|
||||
rng = np.random.default_rng(50)
|
||||
|
||||
n = 20
|
||||
t_max = 16
|
||||
t_max = 8
|
||||
n_interp = t_max * 100 + 1
|
||||
|
||||
T = np.linspace(0, t_max, 1601)
|
||||
y = np.clip(
|
||||
interpolate.BSpline(np.linspace(0, t_max, n), 5 * rng.random(n), 2)(T),
|
||||
0,
|
||||
5,
|
||||
t_base = np.linspace(0, t_max, n)
|
||||
lhs = (qmc.LatinHypercube(d=n-2, rng=rng).random(1)[0] - .5) * t_max/n
|
||||
t = t_base + np.concatenate(([0], lhs, [0]))
|
||||
t = t_base
|
||||
s = 5 * rng.random(n)
|
||||
|
||||
t_interp = np.linspace(0, t_max, n_interp)
|
||||
s_interp = np.clip(CubicSpline(t, s)(t_interp), 0, 5)
|
||||
s_n = np.full_like(t_interp[::50], np.nan)
|
||||
s_n = np.floor(s_interp[::50] * 8 / 5)
|
||||
s_n[s_n == 8] = 7
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax2 = ax.twinx()
|
||||
|
||||
ax.plot(t_interp, s_interp, lw=3)
|
||||
ax2.scatter(t_interp[::50], s_n, color="C1")
|
||||
|
||||
ax.grid(False, axis="y")
|
||||
ax.grid(True, axis="x", which="both")
|
||||
ax2.grid(True)
|
||||
|
||||
ax.set(
|
||||
xlim=(0, t_max),
|
||||
ylim=(-.5, 5.5),
|
||||
xlabel="Temps (s)",
|
||||
)
|
||||
y_n = np.full([1601], np.nan)
|
||||
y_n[::50] = np.floor(y[::50] * 8 / 5)
|
||||
y_n[y_n == 8] = 7
|
||||
|
||||
|
||||
data = pd.DataFrame({
|
||||
"t": T,
|
||||
"s": y,
|
||||
"s_n": y_n,
|
||||
})
|
||||
|
||||
base = alt.Chart(
|
||||
data
|
||||
).encode(
|
||||
alt.X("t:Q").axis(title="Temps (s)").scale(domain=(0,t_max)),
|
||||
ax.set_ylabel("Signal analogique (V)", color="C0")
|
||||
ax2.set(
|
||||
ylim=(-8/5*.5, 8/5*5.5),
|
||||
)
|
||||
ax2.set_ylabel("Signal numérique", color="C1")
|
||||
|
||||
ch = base.mark_line(
|
||||
interpolate="basis",
|
||||
strokeWidth=3,
|
||||
color="#6666cc",
|
||||
).encode(
|
||||
alt.Y("s:Q", axis=alt.Axis(title="Signal analogique", titleColor="#6666cc")).scale(domain=(0,5)),
|
||||
)
|
||||
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
|
||||
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
|
||||
ax.xaxis.set_minor_locator(ticker.MultipleLocator(.5))
|
||||
ax2.set_yticks(np.arange(9), np.concatenate((np.arange(8), [""])))
|
||||
|
||||
ch_n = base.mark_point(
|
||||
filled=True,
|
||||
color="#ff6600",
|
||||
).encode(
|
||||
alt.Y(
|
||||
"s_n:Q",
|
||||
axis=alt.Axis(
|
||||
title="Signal numérisé",
|
||||
titleColor="#ff6600",
|
||||
values=np.arange(8),
|
||||
)
|
||||
).scale(domain=(0,8)),
|
||||
)
|
||||
|
||||
alt.layer(ch_n, ch).resolve_scale(
|
||||
y="independent",
|
||||
).properties(
|
||||
width="container",
|
||||
height=200,
|
||||
)
|
||||
arr = ax2.annotate("", xy=(0, 0), xytext=(0.5, 0), arrowprops=dict(arrowstyle="<->"))
|
||||
ax2.annotate("$T_e$", (0.5, 1), xycoords=arr, ha="center", va="bottom")
|
||||
|
||||
arr2 = ax2.annotate("", xy=(0.5, 0), xytext=(0.5, 1), arrowprops=dict(arrowstyle="<->"))
|
||||
ax2.annotate("$q$", (1, 0.5), xycoords=arr2, ha="left", va="center")
|
||||
|
||||
arr3 = ax2.annotate("", xy=(1, 0), xytext=(1, 8), arrowprops=dict(arrowstyle="<->"))
|
||||
ax2.annotate("$V_{pe}$", (1, 0.5), xycoords=arr3, ha="left", va="center")
|
||||
```
|
||||
Signal analogique et signal numérisé.
|
||||
````
|
||||
|
@ -108,34 +103,37 @@ Signal analogique et signal numérisé.
|
|||
:label: fig:carac-can
|
||||
```{code-cell} python
|
||||
:tags: [remove-input]
|
||||
import altair as alt
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import ticker
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import interpolate
|
||||
|
||||
N = 8
|
||||
s_n = np.arange(N+1)
|
||||
s_n[-1] = s_n[-2]
|
||||
data = pd.DataFrame({
|
||||
"s_n": s_n,
|
||||
"s_a": np.linspace(0, 5, N+1),
|
||||
})
|
||||
s_n = np.arange(N)
|
||||
s_a = np.linspace(0, 5, N+1)
|
||||
|
||||
alt.Chart(
|
||||
data
|
||||
).mark_line(
|
||||
interpolate="step-after",
|
||||
strokeWidth=3,
|
||||
color="#ff6600",
|
||||
).encode(
|
||||
alt.X("s_a:Q").axis(title="Signal Analogique").scale(domain=(0,5)),
|
||||
alt.Y("s_n:Q", axis=alt.Axis(title="Signal numérique", values=np.arange(N))).scale(domain=(0,N)),
|
||||
).properties(
|
||||
width=200,
|
||||
height=200,
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
ax.stairs(s_n, s_a, color="C1", lw=3, baseline=None)
|
||||
|
||||
ax.set(
|
||||
xlim=(0, 5),
|
||||
ylim=(-1, N),
|
||||
yticks=s_n,
|
||||
xlabel="Signal analogique (V)",
|
||||
ylabel="Signal numérique",
|
||||
)
|
||||
ax.set_xticks(s_a, [f"{v:.3f}" for v in s_a], rotation=45, ha="right", rotation_mode="anchor")
|
||||
ax.set_aspect(5/8, 'box')
|
||||
|
||||
arr4 = ax.annotate(
|
||||
"", xy=(s_a[0], 0), xytext=(s_a[1], 0), arrowprops=dict(arrowstyle="<->")
|
||||
)
|
||||
ax.annotate("$q$", (0.5, 1), xycoords=arr4, ha="center", va="bottom")
|
||||
|
||||
arr5 = ax.annotate(
|
||||
"", xy=(s_a[0], 1.5), xytext=(s_a[-1], 1.5), arrowprops=dict(arrowstyle="<->")
|
||||
)
|
||||
ax.annotate("$V_{pe}$", (0.5, 1), xycoords=arr5, ha="center", va="bottom")
|
||||
```
|
||||
Caractéristique du CAN.
|
||||
````
|
Loading…
Add table
Reference in a new issue