83 lines
2 KiB
Python
83 lines
2 KiB
Python
|
import argparse
|
||
|
import configparser
|
||
|
import logging
|
||
|
import pathlib
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from scipy import interpolate
|
||
|
|
||
|
from .lambert import Lambert
|
||
|
|
||
|
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
|
||
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
||
|
log = logging.getLogger("bathy")
|
||
|
|
||
|
log.info("Starting bathymetry pre-processing")
|
||
|
config = configparser.ConfigParser()
|
||
|
config.read("config.ini")
|
||
|
|
||
|
bathy_inp = pathlib.Path(config.get("bathy", "sub"))
|
||
|
bathy_out = pathlib.Path(config.get("bathy", "out"))
|
||
|
|
||
|
log.info(f"Loading bathymetry from {bathy_inp}")
|
||
|
bathy_curvi = np.load(bathy_inp)
|
||
|
|
||
|
projection = Lambert()
|
||
|
bathy = np.stack(
|
||
|
(
|
||
|
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
|
||
|
bathy_curvi[:, 2],
|
||
|
),
|
||
|
axis=1
|
||
|
)
|
||
|
log.debug(f"Cartesian bathy: {bathy}")
|
||
|
|
||
|
artha_curvi = np.array(
|
||
|
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
|
||
|
)
|
||
|
buoy_curvi = np.array(
|
||
|
(config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat"))
|
||
|
)
|
||
|
|
||
|
artha = np.asarray(projection.cartesian(*artha_curvi))
|
||
|
buoy = np.asarray(projection.cartesian(*buoy_curvi))
|
||
|
|
||
|
|
||
|
def display():
|
||
|
x = np.linspace(bathy[:, 0].min(), bathy[:, 0].max())
|
||
|
y = np.linspace(bathy[:, 1].min(), bathy[:, 1].max())
|
||
|
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
|
||
|
Z = interpolate.griddata(
|
||
|
bathy[:, :2], bathy[:, 2], (X, Y), method="nearest"
|
||
|
)
|
||
|
|
||
|
fix, ax = plt.subplots()
|
||
|
ax.pcolormesh(X, Y, Z)
|
||
|
ax.scatter(*artha, c="k")
|
||
|
ax.scatter(*buoy, c="k")
|
||
|
|
||
|
ax.axis("equal")
|
||
|
return ax
|
||
|
|
||
|
|
||
|
D = np.diff(np.stack((artha, buoy)), axis=0)
|
||
|
x = np.arange(-150, np.sqrt((D**2).sum()) + 150)
|
||
|
theta = np.angle(D.dot((1, 1j)))
|
||
|
|
||
|
coords = artha + (x * np.stack((np.cos(theta), np.sin(theta)))).T
|
||
|
|
||
|
z = interpolate.griddata(bathy[:,:2], bathy[:,2], coords)
|
||
|
|
||
|
ax = display()
|
||
|
ax.scatter(*coords.T, c="k", marker=".")
|
||
|
|
||
|
fig_1d, ax_1d = plt.subplots()
|
||
|
ax_1d.plot(x, z)
|
||
|
plt.show(block=True)
|