1
Fork 0
internship/swash/processing/bathy_nb.py

95 lines
2.9 KiB
Python
Raw Normal View History

2022-03-07 12:39:00 +01:00
import argparse
import configparser
import logging
import pathlib
import sys
import numpy as np
import pandas as pd
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read("config.ini")
root = pathlib.Path(config.get("data", "root"))
log.info(f"Reading input data from '{root}'")
bathy_hires = np.loadtxt(root.joinpath(config.get("data", "hires")))
bathy_lores = np.loadtxt(root.joinpath(config.get("data", "bathy")))
hstru = np.loadtxt(root.joinpath(config.get("data", "hstru")))
poro = np.loadtxt(root.joinpath(config.get("data", "poro")))
psize = np.loadtxt(root.joinpath(config.get("data", "psize")))
log.info("Generating grid")
x_hires = -np.arange(0, 0.5 * bathy_hires.size, 0.5)[::-1]
x_lores = -np.arange(0, 1 * bathy_lores.size, 1)[::-1]
x_hstru = -np.arange(0, 0.5 * hstru.size, 0.5)[::-1]
log.info("Generating output data")
bathy_hires_pd = pd.Series(bathy_hires.copy(), index=x_hires)
bathy_lores_pd = pd.Series(bathy_lores.copy(), index=x_lores)
bathy = pd.DataFrame(
index=bathy_lores_pd.index.union(bathy_hires_pd.index),
columns=("z", "hstru", "poro", "psize"),
data=0,
)
bathy.z[bathy_lores_pd.index] = bathy_lores_pd
bathy.z[bathy_hires_pd.index] = bathy_hires_pd
bathy.z = np.minimum(bathy.z, -15)
2022-03-09 15:23:51 +01:00
# bathy.loc[x_hstru, ("hstru", "poro", "psize")] = np.array(
2022-03-07 12:39:00 +01:00
# (hstru, poro, psize)
2022-03-09 15:23:51 +01:00
# ).T
2022-03-07 12:39:00 +01:00
bathy = bathy.reindex(bathy_lores_pd.index)
log.debug(f"Bathymetry:\n{bathy}")
log.info(
f"xmin: {bathy.index.min()}, "
f"xmax: {bathy.index.max()}, "
f"n: {bathy.index.size}"
)
if config.has_option("data", "out_nb"):
out = pathlib.Path(config.get("data", "out_nb"))
log.info(f"Writing output data to '{out}'")
out.mkdir(exist_ok=True)
np.savetxt(out.joinpath("bathy.dat"), bathy.z, newline=" ")
np.savetxt(out.joinpath("hstru.dat"), bathy.hstru, newline=" ")
np.savetxt(out.joinpath("poro.dat"), bathy.poro, newline=" ")
np.savetxt(out.joinpath("psize.dat"), bathy.psize, newline=" ")
bathy.to_hdf(out.joinpath("bathy.h5"), "bathy", mode="w")
if config.getboolean("proc", "plot", fallback=False):
if plt is None:
log.error("Could not import PyPlot")
sys.exit(1)
log.info("Plotting data")
fig, ax = plt.subplots()
ax.plot(x_hires, bathy_hires, label="High-res")
ax.plot(x_lores, bathy_lores, label="Low-res")
ax.plot(bathy.index, bathy.z, ls="-.", c="k", label="Combined")
ax.plot(bathy.index, bathy.z + bathy.hstru, label="Hstru")
ax.grid()
ax.legend()
plt.show(block=True)
log.info("Processing finished")