1
Fork 0
internship/swash/processing/r_test.py

51 lines
1.1 KiB
Python
Raw Normal View History

2022-04-04 10:26:58 +02:00
import matplotlib.pyplot as plt
import numpy as np
from numpy import random
import scipy.signal as sgl
yi = random.normal(size=2**20)
yr = 0.3 * np.roll(yi, -(2**10))
figy, axy = plt.subplots()
axy.plot(np.arange(2**10, 2**11), yi[2**10 : 2**11])
axy.plot(np.arange(2**10, 2**11), yr[2**10 : 2**11])
figf, axf = plt.subplots()
axf.plot(*sgl.welch(yi))
axf.plot(*sgl.welch(yr))
eta = yi + yr
u = -yi + yr
def puv(eta, u):
f, phi_eta = sgl.welch(eta)
phi_u = sgl.welch(u)[1]
phi_eta_u = np.abs(sgl.csd(eta, u)[1].real)
return f, np.sqrt(
(phi_eta + phi_u - 2 * phi_eta_u) / (phi_eta + phi_u + 2 * phi_eta_u)
)
figr, axr = plt.subplots()
axr.plot(*puv(eta, u), label="Without noise")
axr.plot(
*puv(
eta + 0.4 * random.normal(size=2**20), u + 0.4 * random.normal(size=2**20)
),
label="With noise"
)
axr.grid()
axr.autoscale(True, "x", tight=True)
axr.set(ylim=(0, 1), ylabel="R", xlabel="f")
axr.legend(loc="lower left")
axpsd = axr.twinx()
axpsd.plot(*sgl.welch(eta), label=r"PSD ($\eta$)", c="k", alpha=0.2, lw=1)
axpsd.legend(loc="lower right")
axpsd.set(ylabel="PSD")
plt.show()