1
Fork 0
internship/data/processing/ts.py

49 lines
1.4 KiB
Python
Raw Normal View History

2022-03-31 10:24:38 +02:00
import argparse
import configparser
import logging
import pathlib
2022-03-31 10:31:45 +02:00
import matplotlib.pyplot as plt
2022-03-31 10:24:38 +02:00
import numpy as np
parser = argparse.ArgumentParser(description="Pre-process time-series")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting time-series pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"))
out_root = pathlib.Path(config.get("out", "root"))
inp_ts = inp_root.joinpath(config.get("inp", "raw_ts"))
out_ts = out_root.joinpath("ts.dat")
raw_ts = np.loadtxt(
inp_ts,
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
delimiter=",",
max_rows=2304,
)
log.debug(f"{raw_ts=}")
if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
t = np.linspace(0, 30 * 60, 2305)[:-1]
log.debug(f"{t=}")
log.info(f"Saving timeseries to '{out_ts}'")
2022-03-31 10:31:45 +02:00
np.savetxt(out_ts, np.stack((t, raw_ts["z"]/100), axis=1))
fig, ax = plt.subplots()
ax.plot(t, raw_ts["z"])
ax.set(xlabel="t (s)", ylabel="z (cm)")
fig.savefig(out_root.joinpath("ts.pdf"))