1
Fork 0
internship/olaflow/processing/animate.py

149 lines
3.9 KiB
Python
Raw Normal View History

2022-04-13 14:08:55 +02:00
import argparse
2022-04-14 12:37:42 +02:00
import gzip
2022-04-13 14:08:55 +02:00
import logging
2022-04-13 15:10:41 +02:00
import multiprocessing as mp
2022-04-13 14:08:55 +02:00
import pathlib
import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
2022-04-15 11:42:12 +02:00
from matplotlib.gridspec import GridSpec
2022-04-13 14:08:55 +02:00
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-o",
"--output",
type=pathlib.Path,
help="Output directory for pickled data",
required=True,
)
2022-04-13 14:08:55 +02:00
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
2022-04-14 12:38:49 +02:00
log.info("Animating olaFlow output")
out = args.output
2022-04-14 12:37:42 +02:00
out.mkdir(parents=True, exist_ok=True)
2022-04-13 14:08:55 +02:00
2022-04-15 10:31:55 +02:00
with (
path.open("rb")
if (path := out.joinpath("pickle")).exists()
else gzip.open(path.with_suffix(".gz"), "rb")
) as f:
2022-04-13 14:08:55 +02:00
model = pickle.load(f)
i0 = np.argmin(np.abs((model.x - x0) + 1j * (model.z - z0)))
x0, idx0 = np.unique(model.x.astype(np.half), return_inverse=True)
z0, idz0 = np.unique(model.z.astype(np.half), return_inverse=True)
2022-04-13 14:08:55 +02:00
X, Z = np.meshgrid(x0, z0)
2022-04-13 14:08:55 +02:00
P = np.full((model.t.size, *X.shape), np.nan)
P[:, idz0, idx0] = model.fields["porosity"]
2022-04-13 15:10:41 +02:00
2022-04-13 14:08:55 +02:00
AW = np.full((model.t.size, *X.shape), np.nan)
AW[:, idz0, idx0] = model.fields["alpha.water"]
2022-04-13 14:08:55 +02:00
2022-04-13 15:10:41 +02:00
U = np.full((model.t.size, *X.shape), np.nan)
U[:, idz0, idx0] = np.linalg.norm(model.fields["U"], axis=1)
2022-04-13 15:10:41 +02:00
2022-04-15 11:42:12 +02:00
fig = plt.figure(figsize=(19.2, 10.8), dpi=100)
gs = GridSpec(3, 1, figure=fig, height_ratios=[1, 0.05, 0.05])
2022-04-15 11:42:12 +02:00
ax = fig.add_subplot(gs[0])
cax1 = fig.add_subplot(gs[1])
cax2 = fig.add_subplot(gs[2])
2022-04-13 14:08:55 +02:00
tit = ax.text(
0.5,
0.95,
f"t={model.t[0]}s",
horizontalalignment="center",
verticalalignment="top",
transform=ax.transAxes,
)
aw_m = ax.pcolormesh(X, Z, AW[0], vmin=0, vmax=1, cmap="Blues", zorder=1)
2022-04-15 11:42:12 +02:00
p_m = ax.pcolormesh(
2022-04-13 14:08:55 +02:00
X,
Z,
P[1],
vmin=0,
vmax=1,
cmap="Greys_r",
2022-04-13 15:10:41 +02:00
alpha=(np.nan_to_num(1 - P[1]) / 2).clip(0, 1),
2022-04-13 14:08:55 +02:00
zorder=1.1,
)
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
2022-04-15 11:42:12 +02:00
fig.colorbar(aw_m, label=r"$\alpha_w$", cax=cax1, shrink=0.6, orientation="horizontal")
fig.colorbar(p_m, label=r"Porosity", cax=cax2, shrink=0.6, orientation="horizontal")
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#000000")
2022-04-13 15:10:41 +02:00
ax.grid(c="k", alpha=0.2)
2022-04-13 14:08:55 +02:00
def anim(i):
2022-04-13 14:18:40 +02:00
tit.set_text(f"t={model.t[i]}s")
aw_m.set_array(AW[i])
2022-04-13 14:08:55 +02:00
2022-04-15 11:42:12 +02:00
figU = plt.figure(figsize=(19.2, 10.8), dpi=100)
gsU = GridSpec(3, 1, figure=figU, height_ratios=[1, 0.05, 0.05])
2022-04-15 11:42:12 +02:00
axU = figU.add_subplot(gsU[0])
caxu1 = figU.add_subplot(gsU[1])
caxu2 = figU.add_subplot(gsU[2])
2022-04-13 15:10:41 +02:00
u_m = axU.pcolormesh(
2022-04-15 10:31:55 +02:00
X,
Z,
U[0],
cmap="BuPu",
vmin=0,
vmax=np.nanquantile(U, 0.99),
zorder=1,
alpha=np.nan_to_num(AW[0]).clip(0, 1),
2022-04-13 15:10:41 +02:00
)
ur_m = axU.pcolormesh(
2022-04-15 10:31:55 +02:00
X,
Z,
U[0],
cmap="YlOrBr",
vmin=0,
vmax=np.nanquantile(U, 0.99),
zorder=1,
alpha=1 - np.nan_to_num(AW[0]).clip(0, 1),
2022-04-13 15:10:41 +02:00
)
# aw_u = axU.contour(X, Z, AW[0], levels=(.5,))
axU.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
axU.grid(c="k", alpha=0.2)
titU = axU.text(
0.5,
0.95,
f"t={model.t[0]}s",
horizontalalignment="center",
verticalalignment="top",
transform=axU.transAxes,
)
2022-04-15 11:42:12 +02:00
figU.colorbar(u_m, label=r"$U_w$", cax=caxu1, shrink=0.6, orientation="horizontal")
figU.colorbar(ur_m, label=r"$U_a$", cax=caxu2, shrink=0.6, orientation="horizontal")
2022-04-13 15:10:41 +02:00
def animU(i):
titU.set_text(f"t={model.t[i]}s")
u_m.set_array(U[i])
u_m.set_alpha(np.nan_to_num(AW[i]).clip(0, 1))
ur_m.set_array(U[i])
2022-04-15 10:31:55 +02:00
ur_m.set_alpha(1 - np.nan_to_num(AW[i]).clip(0, 1))
2022-04-13 15:10:41 +02:00
ani = animation.FuncAnimation(fig, anim, frames=model.t.size, interval=1 / 24)
aniU = animation.FuncAnimation(figU, animU, frames=model.t.size, interval=1 / 24)
2022-04-15 11:42:12 +02:00
ani.save(out.joinpath("anim.mp4"), fps=24)
aniU.save(out.joinpath("animU.mp4"), fps=24)