2022-03-03 15:51:51 +01:00
|
|
|
import configparser
|
|
|
|
import pathlib
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import scipy.signal as sgl
|
|
|
|
|
|
|
|
from .read_swash import *
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Post-process swash output")
|
|
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
|
|
log = logging.getLogger("post")
|
|
|
|
|
|
|
|
log.info("Starting post-processing")
|
|
|
|
config = configparser.ConfigParser()
|
|
|
|
config.read("config.ini")
|
|
|
|
|
|
|
|
cache = pathlib.Path(config.get("data", "out"))
|
|
|
|
root = pathlib.Path(config.get("swash", "out"))
|
|
|
|
|
|
|
|
log.info(f"Reading bathymetry from '{cache}'")
|
|
|
|
bathy = pd.read_hdf(cache.joinpath("bathy.h5"), "bathy")
|
2022-03-03 16:02:52 +01:00
|
|
|
data = np.load(pathlib.Path(config.get("post", "inp")).joinpath("sws.npz"))
|
|
|
|
x, t = data["x"], data["t"]
|
2022-03-03 15:51:51 +01:00
|
|
|
|
|
|
|
# Cospectral calculations
|
|
|
|
x0 = config.getint("post", "x0")
|
2022-03-03 16:02:52 +01:00
|
|
|
t0 = config.getfloat("post", "t0")
|
|
|
|
dt = config.getfloat("post", "dt")
|
2022-03-03 15:51:51 +01:00
|
|
|
f = 1 / dt
|
|
|
|
log.info(f"Computing reflection coefficient at x={x0}")
|
|
|
|
|
2022-03-03 16:03:44 +01:00
|
|
|
eta = data["dep"][t > t0, x0] - data["botl"][x0]
|
2022-03-03 16:02:52 +01:00
|
|
|
u = data["vel"][t > t0, 0, x0]
|
2022-03-03 15:51:51 +01:00
|
|
|
|
|
|
|
phi_eta = np.abs(sgl.csd(eta, eta, f))
|
|
|
|
phi_u = np.abs(sgl.csd(u, u, f))
|
|
|
|
phi_eta_u = np.abs(sgl.csd(eta, u, f))
|
|
|
|
|
|
|
|
R = np.sqrt(
|
|
|
|
(phi_eta[1] + phi_u[1] - 2 * phi_eta_u[1])
|
|
|
|
/ (phi_eta[1] + phi_u[1] + 2 * phi_eta_u[1])
|
|
|
|
)
|
|
|
|
|
|
|
|
# Plotting
|
|
|
|
log.info("Plotting results")
|
|
|
|
fig, (ax_dep, ax_vel) = plt.subplots(2)
|
|
|
|
|
2022-03-03 16:02:52 +01:00
|
|
|
ax_dep.plot(t, data["dep"][:, x0] - data["botl"][x0], label="dep")
|
2022-03-03 15:51:51 +01:00
|
|
|
ax_dep.set(xlabel="t (s)", ylabel="z (m)")
|
|
|
|
ax_dep.autoscale(axis="x", tight=True)
|
|
|
|
ax_dep.grid()
|
|
|
|
ax_dep.axvline(t0, c="k", alpha=0.2)
|
|
|
|
|
2022-03-03 16:02:52 +01:00
|
|
|
ax_vel.plot(t, data["vel"][:, 0, x0], label="vel")
|
2022-03-03 15:51:51 +01:00
|
|
|
ax_vel.set(xlabel="t (s)", ylabel="U (m/s)")
|
|
|
|
ax_vel.autoscale(axis="x", tight=True)
|
|
|
|
ax_vel.grid()
|
|
|
|
ax_vel.axvline(t0, c="k", alpha=0.2)
|
|
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
|
|
|
fig_r, ax_r = plt.subplots()
|
|
|
|
|
|
|
|
ax_r.plot(phi_eta[0], R)
|
|
|
|
ax_r.autoscale(axis="x", tight=True)
|
|
|
|
ax_r.set(ylim=(0, 1), xlabel="f (Hz)", ylabel="R")
|
|
|
|
ax_r.grid()
|
|
|
|
|
|
|
|
fig_x, ax_x = plt.subplots()
|
2022-03-03 16:02:52 +01:00
|
|
|
ax_x.plot(-data["botl"], color="k")
|
2022-03-03 16:12:19 +01:00
|
|
|
ax_x.plot(data["dep"][np.argmin(np.abs(t - t0)), :] - data["botl"])
|
2022-03-03 15:51:51 +01:00
|
|
|
ax_x.axvline(x0, c="k", alpha=0.2)
|
|
|
|
ax_x.set(xlabel="x (m)", ylabel="z (m)")
|
|
|
|
ax_x.autoscale(axis="x", tight=True)
|
|
|
|
ax_x.grid()
|
|
|
|
|
|
|
|
out = pathlib.Path(config.get("post", "out"))
|
|
|
|
log.info(f"Saving plots in '{out}'")
|
|
|
|
out.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
fig.savefig(out.joinpath(f"t{x0}.png"))
|
|
|
|
fig_r.savefig(out.joinpath(f"R{x0}.png"))
|
|
|
|
fig_x.savefig(out.joinpath(f"x{t0}.png"))
|
|
|
|
|
|
|
|
log.info("Finished post-processing")
|