1
Fork 0
internship/olaflow/processing/diff.py

143 lines
4 KiB
Python
Raw Normal View History

2022-05-03 11:53:58 +02:00
import argparse
import gzip
from itertools import starmap
import logging
from multiprocessing import pool
import pathlib
import pickle
2022-05-09 11:23:09 +02:00
import sys
2022-05-03 11:53:58 +02:00
from cycler import cycler
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-o",
"--output",
action="append",
type=pathlib.Path,
help="Post-processing directory",
required=True,
)
2022-05-06 11:14:05 +02:00
parser.add_argument(
"-t",
"--timestep",
type=float,
help="Time-step to compare",
)
parser.add_argument(
"-f",
"--func",
type=str,
help="Post-process function to compare",
default="graphUniform",
2022-05-09 11:23:09 +02:00
choices=("graphUniform", "graphUniform2"),
)
parser.add_argument(
"-y",
"--field",
type=str,
help="Field to compare",
default="alpha.water",
choices=("alpha.water", "U"),
2022-05-06 11:14:05 +02:00
)
2022-05-03 11:53:58 +02:00
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Plotting comparison of model output")
def get_pickle(out):
with (
path.open("rb")
if (path := out.joinpath("pickle")).exists()
else gzip.open(path.with_suffix(".gz"), "rb")
) as f:
return pickle.load(f)
models = list(map(get_pickle, args.output))
2022-05-09 11:23:09 +02:00
fig, ax_ = plt.subplots(
2022-05-09 11:23:09 +02:00
len(models),
figsize=(6, 1.5 * len(models)),
dpi=100,
constrained_layout=True,
squeeze=False,
)
ax = ax_[:, 0]
2022-05-09 11:23:09 +02:00
2022-05-06 11:14:05 +02:00
if args.timestep is None:
2022-05-09 11:23:09 +02:00
match args.field:
case "alpha.water":
for i, (_ax, _model) in enumerate(zip(ax, models)):
_ax.contour(
_model.t,
_model.post_fields[args.func][f"x_{args.field}"],
_model.post_fields[args.func][args.field].T,
(0.5,),
colors="k",
)
case "U":
for i, (_ax, _model) in enumerate(zip(ax, models)):
_c = _ax.imshow(
np.where(_model.post_fields[args.func]["alpha.water"] > 0.5, np.linalg.norm(_model.post_fields[args.func][args.field], axis=2), np.nan).T[::-1],
2022-05-09 11:23:09 +02:00
vmin=0,
vmax=20,
cmap="inferno_r",
2022-05-09 11:23:09 +02:00
extent=(
_model.t.min(),
_model.t.max(),
_model.post_fields[args.func][f"x_{args.field}"].min(),
_model.post_fields[args.func][f"x_{args.field}"].max(),
),
)
fig.colorbar(_c, label=f"{args.field} (m/s)", ax=_ax)
case _:
log.error(f"Cannot plot field {args.field} from {args.func}")
sys.exit(1)
2022-05-06 11:14:05 +02:00
2022-05-09 11:23:09 +02:00
for i, (_ax, _model) in enumerate(zip(ax, models)):
2022-05-06 11:14:05 +02:00
_ax.set(xlabel="t (s)", ylabel="z (m)", title=f"Case {i}")
2022-05-09 11:23:09 +02:00
_ax.grid(color="k", alpha=0.2)
2022-05-06 11:14:05 +02:00
fig.savefig(
args.output[0].joinpath(
2022-05-09 11:23:09 +02:00
f"diff_{args.func}_{args.field}_{'_'.join([o.name for o in args.output])}.pdf"
2022-05-06 11:14:05 +02:00
)
2022-05-03 11:53:58 +02:00
)
2022-05-06 11:14:05 +02:00
else:
2022-05-09 11:23:09 +02:00
match args.field:
case "alpha.water":
for i, (_ax, _model) in enumerate(zip(ax, models)):
_ax.tricontour(
_model.x,
_model.z,
_model.fields[args.field][np.where(_model.t == args.timestep)[0]][0],
levels=(0.5,),
colors="k",
)
case _:
log.error(f"Cannot plot field {args.field} from {args.func} at timestep")
sys.exit(1)
2022-05-03 11:53:58 +02:00
2022-05-09 11:23:09 +02:00
for i, (_ax, _model) in enumerate(zip(ax, models)):
2022-05-06 11:14:05 +02:00
_ax.set(xlabel="x (m)", ylabel="z (m)", title=f"Case {i}")
_ax.grid()
2022-05-03 11:53:58 +02:00
2022-05-06 11:14:05 +02:00
fig.savefig(
args.output[0].joinpath(
f"diff_t{args.timestep}_{'_'.join([o.name for o in args.output])}.pdf"
)
)