1
Fork 0

Data processing + photo analysis

This commit is contained in:
Edgar P. Burkhart 2022-06-24 16:49:36 +02:00
parent a000c67e93
commit 25e0f91bf0
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
5 changed files with 301 additions and 9 deletions

65
data/photos.md Normal file
View file

@ -0,0 +1,65 @@
# Times
## Block Displacement
18:28:12
## Previous
18:27:39
## Next
18:28:28
## Other Waves
18:25:01
18:23:13
18:22:55
18:22:00
18:09:08
18:08:43
18:08:27
18:07:18
18:04:37
17:59:08
17:58:31
17:54:15
17:53:55
17:53:39
17:47:53
17:39:40
17:38:45
17:38:28
17:32:06
17:31:46
17:26:06
17:25:12
17:24:47
17:23:55
17:23:18
# Periods
## Block Displacement
### Before
33
### After
16
## Other Waves
18
25
16
37
20
16
17
20
25
37

View file

@ -45,7 +45,7 @@ if cycle is None:
f = inp["f"] f = inp["f"]
S = inp["S"] * Sm S = inp["S"] * Sm
else: else:
f = np.arange(inp["f"].min(), inp["f"].max() + 1/cycle, 1/cycle) f = np.arange(inp["f"].min(), inp["f"].max() + 1 / cycle, 1 / cycle)
S = griddata(inp["f"], inp["S"] * Sm, f) S = griddata(inp["f"], inp["S"] * Sm, f)
with out_spec.open("w") as out: with out_spec.open("w") as out:

View file

@ -25,12 +25,14 @@ out_ts = out_root.joinpath("ts.dat")
raw_ts = [] raw_ts = []
for tsi in config.get("inp", "raw_ts").split(","): for tsi in config.get("inp", "raw_ts").split(","):
raw_ts.append(np.loadtxt( raw_ts.append(
inp_root.joinpath(tsi), np.loadtxt(
dtype=[("state", int), ("z", float), ("y", float), ("x", float)], inp_root.joinpath(tsi),
delimiter=",", dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
max_rows=2304, delimiter=",",
)) max_rows=2304,
)
)
n = len(raw_ts) n = len(raw_ts)
raw_ts = np.concatenate(raw_ts) raw_ts = np.concatenate(raw_ts)
log.debug(f"{raw_ts=}") log.debug(f"{raw_ts=}")
@ -39,11 +41,11 @@ if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!") log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}") log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
t = np.linspace(0, 30 * 60 * n, 2304*n+1)[:-1] t = np.linspace(0, 30 * 60 * n, 2304 * n + 1)[:-1]
log.debug(f"{t=}") log.debug(f"{t=}")
log.info(f"Saving timeseries to '{out_ts}'") log.info(f"Saving timeseries to '{out_ts}'")
np.savetxt(out_ts, np.stack((t, raw_ts["z"]/100), axis=1)) np.savetxt(out_ts, np.stack((t, raw_ts["z"] / 100), axis=1))
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.plot(t, raw_ts["z"]) ax.plot(t, raw_ts["z"])

View file

@ -0,0 +1,61 @@
import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as sgl
parser = argparse.ArgumentParser(description="Pre-process time-series")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig()
log = logging.getLogger("bathy")
log.setLevel(max((10, 20 - 10 * args.verbose)))
log.info("Starting time-series pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"), "cerema/raw")
out_root = pathlib.Path(config.get("out", "root"))
raw_ts = []
for tsi in sorted(inp_root.glob("2017022817*.raw")):
#for tsi in sorted(inp_root.glob("*.raw")):
raw_ts.append(
np.loadtxt(
tsi,
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
delimiter=",",
max_rows=2304,
)
)
log.debug(f"Loading <{tsi}>")
n = len(raw_ts)
raw_ts = np.concatenate(raw_ts)
log.debug(f"{raw_ts=}")
# t = np.linspace(0, 30 * 60 * n * 1e3, 2304 * n + 1)[:-1].astype("timedelta64[ms]") + np.datetime64("2017-02-28T00:00")
t = np.linspace(0, 30 * 60 * n, 2304 * n, endpoint=False)
if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
# log.debug(f"{t[raw_ts['state'] != 0]}")
z = raw_ts["z"]
# z = np.cos(2 * np.pi * 7 * t) + sgl.gausspulse(t - 0.4, fc=2)
M = sgl.cwt(z, sgl.morlet, np.arange(1, 30 / (30 * 60 / 2304)))
print(M)
fig, ax = plt.subplots()
c = ax.imshow(M, aspect="auto", cmap="spring", vmin=0)
ax2 = ax.twinx()
ax2.plot(z, c="k")
fig.colorbar(c)
plt.show()

View file

@ -0,0 +1,164 @@
import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import scipy.signal as sgl
from scipy import fft
parser = argparse.ArgumentParser(description="Pre-process time-series")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig()
log = logging.getLogger("bathy")
log.setLevel(max((10, 20 - 10 * args.verbose)))
log.info("Starting time-series pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"), "cerema/raw")
out_root = pathlib.Path(config.get("out", "root"))
out_root.mkdir(exist_ok=True)
raw_ts = []
#for tsi in sorted(inp_root.glob("2017022817*.raw")):
for tsi in sorted(inp_root.glob("*.raw")):
raw_ts.append(
np.loadtxt(
tsi,
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
delimiter=",",
max_rows=2304,
)
)
log.debug(f"Loading <{tsi}>")
n = len(raw_ts)
raw_ts = np.concatenate(raw_ts)
log.debug(f"{raw_ts=}")
t0 = np.linspace(0, 30 * 60 * n, 2304 * n, endpoint=False)
t = (t0 * 1e3).astype("timedelta64[ms]") + np.datetime64("2017-02-28T00:00")
if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
# log.debug(f"{t[raw_ts['state'] != 0]}")
sos = sgl.butter(1, 0.2, btype="lowpass", fs=2305 / (30 * 60), output="sos")
z = sgl.sosfiltfilt(sos, raw_ts["z"]*1e-2)
cr0 = np.where(np.diff(np.sign(z)))[0]
wave = np.fromiter(
(
np.max(np.abs(z[cr0[i - 1] : cr0[i]])) + np.max(np.abs(z[cr0[i] : cr0[i + 1]]))
for i in range(1, len(cr0) - 1)
),
dtype=np.single,
)
log.debug(f"{wave=}")
log.debug(f"{t=}")
# plt.plot(t[cr0[1:-1]], wave)
nw = len(wave) / 2
nlw = np.sum(wave > 12)
H13 = np.quantile(wave, 2 / 3)
log.info(f"Number of waves: {nw}")
log.info(f"Number of waves >m: {nlw}")
log.info(f"Proportion: {nlw/nw:e}")
log.info(f"H1/3: {H13}m")
dt = 30 * 60 / 2304
# Mlims = (int(5 / dt), int(30 / dt))
N = t.size // 24
s0 = 2 * dt
dj = 0.5
J = 1 / dj * np.log2(N * dt / s0)
j = np.arange(0, J)
sj = s0 * 2 ** (j * dj)
# sj = s0 * np.arange(1, 2 ** (J * dj))
Mw = sj / dt
Mlims = sj[[0, -1]]
M = (np.abs(sgl.cwt(raw_ts["z"]*1e-2, sgl.morlet2, Mw))/np.var(raw_ts["z"]*1e-2))**2
# M = np.abs(sgl.cwt(z, sgl.morlet, Mw))
v = np.max(np.abs(M))
fig, ax = plt.subplots()
# ax2 = ax.twinx()
# ax.plot(t0, raw_ts["z"], lw=.5, c="k", alpha=.2)
# ax.plot(t0, z, ls="-.", lw=.25, alpha=.2, c="k")
st = raw_ts["state"][raw_ts["state"] != 0]
c = np.asarray(["g", "b", "r"])
# ax.vlines(t0[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
# ax.set(xlabel="t (s)", ylabel="z (cm)")
# ax.set(xlim=(17 * 3600 + 20 * 60, 17 * 3600 + 30 * 60))
ax.grid(c="k", alpha=0.2)
ax.set(zorder=1, frame_on=False)
ax.semilogy()
a = [t0[0], t0[-1], *Mlims]
# c = ax.imshow(M, extent=a, aspect="auto", cmap="plasma", vmin=0)
c = ax.contourf(t, sj, M, cmap="Greys", vmin=0, vmax=v)
fig.colorbar(c)
bigw = np.where(wave > 12)[0]
ym = 1.1 * np.max(np.abs(z))
for w in bigw:
fig, (ax2, ax) = plt.subplots(2, figsize=(15/2.54, 2/3*10/2.54), constrained_layout=True)
i0 = cr0[w] - int(1200 / dt)
i1 = cr0[w + 2] + int(1200 / dt)
# a = [t0[i0], t0[i1], *Mlims]
# c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v)
c = ax2.contourf(
t[i0:i1],
sj,
M[:, i0:i1],
cmap="Greys",
vmin=0,
levels=[1, 2.5, 5, 10, 20, 40],
extend="both",
)
fig.colorbar(c, ax=ax2, label="NWPS")
ax.plot(t[i0:i1], (raw_ts["z"]*1e-2)[i0:i1], c="k", lw=1)
#ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.")
# ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym))
ax2.set(ylabel="T (s)")
ax2.grid(c="k", alpha=0.2)
ax2.semilogy()
ax.grid(c="k", alpha=.2)
#ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.")
#ax.set(zorder=1, frame_on=False)
ax.set(xlabel="t (s)", ylabel="z (m)")
ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1)
locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax2.xaxis.set_major_locator(locator)
ax2.xaxis.set_major_formatter(formatter)
ax2.axes.set_xticklabels([])
ax2.set_rasterization_zorder(1.5)
fig.savefig(out_root.joinpath(f"wavelet{w}.pdf"), dpi=300)
fig.savefig(out_root.joinpath(f"wavelet{w}.png"), dpi=200)
#fig, ax = plt.subplots(constrained_layout=True)
## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1)
#ax.plot(*sgl.welch(raw_ts["z"], 1 / dt), c="k", alpha=0.2, label="PSD")
#ax.plot(1 / sj, N * np.mean(M, axis=1), c="k", label="CWT")
## ax.grid(color="k", alpha=.2)
#ax.set(xlabel="T (s)", ylabel="PSD")
## ax2.set(ylabel="Average Wavelet Transform")
#ax.set(xlim=1 / Mlims)
#ax.legend()
plt.show()