Merge branch 'report'
This commit is contained in:
commit
358338af2e
14 changed files with 152 additions and 0 deletions
|
@ -7,3 +7,120 @@ from the crest).
|
||||||
A tool that allows mapping the output fields from swash to the initial fields
|
A tool that allows mapping the output fields from swash to the initial fields
|
||||||
in olaFlow was built. Alpha.water and U fields are mapped from swash to
|
in olaFlow was built. Alpha.water and U fields are mapped from swash to
|
||||||
olaFlow.
|
olaFlow.
|
||||||
|
|
||||||
|
Boundary conditions are set using the output from the swash model.
|
||||||
|
|
||||||
|
A regular mesh is generated and snapped to the bathymetry (mesh resolution: \SI{.5}{\m}).
|
||||||
|
|
||||||
|
Simulation is run for 400 seconds using the largest wave from the swash model with the buoy spectrum as an input
|
||||||
|
(\autoref{fig:wave}).
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{wave.pdf}
|
||||||
|
\caption{Boundary condition for olaflow model.}\label{fig:wave}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Results are plotted using python \autoref{fig:resola}.
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{resola.pdf}
|
||||||
|
\caption{Results from olaFlow model.}\label{fig:resola}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Porosity parameters}
|
||||||
|
Several parameters should be calibrated in order to accurately model the porous media: $a$, $b$ and $c$ are friction
|
||||||
|
parameters in Forcheimer's equation; D50 is the median diameter of the elements constituting the porous media; $p$ is
|
||||||
|
the porosity of the media.
|
||||||
|
|
||||||
|
7 cases were run with the values in \autoref{tab:porotest}.
|
||||||
|
|
||||||
|
\begin{table}
|
||||||
|
\centering
|
||||||
|
\begin{tabular}{cccccc}
|
||||||
|
\toprule
|
||||||
|
\textbf{Case} & $a$ & $b$ & $c$ & D50 (\si{\m}) & $\phi$ \\
|
||||||
|
\midrule
|
||||||
|
\textbf{0} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{1} & \intersemibold\num{0} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{2} & \intersemibold\num{5000} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{3} & \num{50} & \intersemibold\num{0} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{4} & \num{50} & \intersemibold\num{3.0} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{5} & \num{50} & \num{1.2} & \num{0.34} & \intersemibold\num{2} & \num{0.4} \\
|
||||||
|
\textbf{6} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \intersemibold\num{0.25} \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\caption{Test cases for porosity parameters.}\label{tab:porotest}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
Some results are displayed in \autoref{fig:diff} and \autoref{fig:diff2}. No major differences are noticable
|
||||||
|
between cases (excepted for case 3, where $b=0$).
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diff.pdf}
|
||||||
|
\caption{Tests for porosity parameters; water - air border at \SI{-50}{\m}.}\label{fig:diff}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diff2.pdf}
|
||||||
|
\caption{Tests for porosity parameters; water - air border at \SI{-20}{\m}.}\label{fig:diff2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Another run with a different value for $b$ was made (\autoref{tab:porotestb}). Results are in \autoref{fig:diff3b}.
|
||||||
|
The value of $b$ seems to have a major effect how wave energy is dissipated / how waves break, as seen in
|
||||||
|
\autoref{fig:diff3b175}.
|
||||||
|
|
||||||
|
\begin{table}
|
||||||
|
\centering
|
||||||
|
\begin{tabular}{cccccc}
|
||||||
|
\toprule
|
||||||
|
\textbf{Case} & $a$ & $b$ & $c$ & D50 (\si{\m}) & $\phi$ \\
|
||||||
|
\midrule
|
||||||
|
\textbf{0} & \num{50} & \num{1.2} & \num{0.34} & \num{4} & \num{0.4} \\
|
||||||
|
\textbf{1} & \num{50} & \intersemibold\num{0} & \num{0.34} & \num{4} & \num{0.4} \\ % 3
|
||||||
|
\textbf{2} & \num{50} & \intersemibold\num{0.2} & \num{0.34} & \num{4} & \num{0.4} \\ % 3b
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\caption{Test cases for porosity parameters.}\label{tab:porotestb}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diff3b.pdf}
|
||||||
|
\caption{Tests for porosity parameters; water - air border at \SI{-20}{\m}.}\label{fig:diff3b}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diff3b175.pdf}
|
||||||
|
\caption{Tests for porosity parameters; water - air border at \SI{175}{\s}.}\label{fig:diff3b175}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Turbulence model}
|
||||||
|
A case with the $k-\omega$ SST turbulence model was run to compare with the $k-\varepsilon$ model.
|
||||||
|
Results displayed in \autoref{fig:sst}. Significant differences are found between both models.
|
||||||
|
|
||||||
|
Wave breaking as expected using SST model (\autoref{fig:sst175}). See
|
||||||
|
\url{https://public.edgarpierre.fr/anim_olaflow_kom.mp4}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diffsst.pdf}
|
||||||
|
\caption{$x=\SI{-50}{\m}$. Case 1: $k-\varepsilon$ model; case 2: $k-\omega$ SST model.}\label{fig:sst}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{diffsst175.pdf}
|
||||||
|
\caption{$t=\SI{175}{\s}$. Case 1: $k-\varepsilon$ model; case 2: $k-\omega$ SST model.}\label{fig:sst175}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Results}
|
||||||
|
Maximum flow velocity is displayed in \autoref{fig:maxu}.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{maxu.pdf}
|
||||||
|
\caption{Maximum velocity.}\label{fig:maxu}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The flow reaches \SIrange{15}{20}{\m\per\s} velocity, which is in accordance with results from \textcite{amir}.
|
||||||
|
|
|
@ -124,5 +124,39 @@ Model runs with 4 layers. \autoref{fig:rests4lay}.
|
||||||
\caption{Results with real timeseries, 4 layers.}\label{fig:rests4lay}
|
\caption{Results with real timeseries, 4 layers.}\label{fig:rests4lay}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Reflection coefficient verification}
|
||||||
|
|
||||||
|
A small Python script has been written to generate theoretical wave height and homogenized velocity for a combination of
|
||||||
|
incident and reflected waves.
|
||||||
|
|
||||||
|
The method was taken from \parencite{huntley1999use}. Incident waves are modelled by white noise, reflected waves are
|
||||||
|
incident waves shifted and multiplied by the reflection coefficient. Water level is the sum of incident waves and
|
||||||
|
reflected waves, velocity is the difference of reflected waves and incident waves. Additionnal noise is added to the
|
||||||
|
water level and velocity.
|
||||||
|
|
||||||
|
Results are displayed in \autoref{fig:r_test}.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{r_test.pdf}
|
||||||
|
\caption{Reflection coefficient testing (puv method from \cite{huntley1999use}).}\label{fig:r_test}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Plotting orbitals from buoy measurements}
|
||||||
|
\autoref{fig:orbitals}. Orbital for the large wave have been plotted in the average motion plane of the buoy.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics{orbitals.pdf}
|
||||||
|
\caption{2Dv buoy trajectory for wave event of 20170228.}\label{fig:orbitals}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Buoy spectrum}
|
||||||
|
|
||||||
|
The swash model was run over 4 hours with the spectrum obtained from the buoy, with and without the breakwater. (2
|
||||||
|
layers).
|
||||||
|
|
||||||
|
A zero-crossing methods was implemented to find the largest waves.
|
||||||
|
|
||||||
%\subsection{2D Model}
|
%\subsection{2D Model}
|
||||||
%Working on 2D model which might work with overtopping.
|
%Working on 2D model which might work with overtopping.
|
||||||
|
|
|
@ -170,6 +170,7 @@
|
||||||
%inter-unit-product = {.},
|
%inter-unit-product = {.},
|
||||||
per-mode = power-positive-first,
|
per-mode = power-positive-first,
|
||||||
uncertainty-mode = separate,
|
uncertainty-mode = separate,
|
||||||
|
reset-text-family = false,
|
||||||
}
|
}
|
||||||
\SendSettingsToPgf
|
\SendSettingsToPgf
|
||||||
\DeclareSIUnit\met{met}
|
\DeclareSIUnit\met{met}
|
||||||
|
|
BIN
report/fig/diff.pdf
Normal file
BIN
report/fig/diff.pdf
Normal file
Binary file not shown.
BIN
report/fig/diff2.pdf
Normal file
BIN
report/fig/diff2.pdf
Normal file
Binary file not shown.
BIN
report/fig/diff3b.pdf
Normal file
BIN
report/fig/diff3b.pdf
Normal file
Binary file not shown.
BIN
report/fig/diff3b175.pdf
Normal file
BIN
report/fig/diff3b175.pdf
Normal file
Binary file not shown.
BIN
report/fig/diffsst.pdf
Normal file
BIN
report/fig/diffsst.pdf
Normal file
Binary file not shown.
BIN
report/fig/diffsst175.pdf
Normal file
BIN
report/fig/diffsst175.pdf
Normal file
Binary file not shown.
BIN
report/fig/maxu.pdf
Normal file
BIN
report/fig/maxu.pdf
Normal file
Binary file not shown.
BIN
report/fig/orbitals.pdf
Normal file
BIN
report/fig/orbitals.pdf
Normal file
Binary file not shown.
BIN
report/fig/r_test.pdf
Normal file
BIN
report/fig/r_test.pdf
Normal file
Binary file not shown.
BIN
report/fig/resola.pdf
Normal file
BIN
report/fig/resola.pdf
Normal file
Binary file not shown.
BIN
report/fig/wave.pdf
Normal file
BIN
report/fig/wave.pdf
Normal file
Binary file not shown.
Loading…
Reference in a new issue