Custom implementation of reflex3s (fft, working, with plotting)
This commit is contained in:
parent
0cb87c5032
commit
4f7780c6ff
2 changed files with 99 additions and 33 deletions
68
swash/processing/post_reflex.py
Normal file
68
swash/processing/post_reflex.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
import argparse
|
||||
import configparser
|
||||
import logging
|
||||
import pathlib
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import scipy.signal as sgl
|
||||
|
||||
from .reflex3s import reflex3s
|
||||
from .pa.reflex3S import reflex3S
|
||||
from .pa.PUV import PUV_dam
|
||||
|
||||
parser = argparse.ArgumentParser(description="Post-process swash output")
|
||||
parser.add_argument("-v", "--verbose", action="count", default=0)
|
||||
parser.add_argument("-c", "--config", default="config.ini")
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
||||
log = logging.getLogger("post")
|
||||
|
||||
log.info("Starting post-processing")
|
||||
config = configparser.ConfigParser()
|
||||
config.read(args.config)
|
||||
|
||||
inp = pathlib.Path(config.get("post", "inp"))
|
||||
root = pathlib.Path(config.get("swash", "out"))
|
||||
|
||||
log.info(f"Reading data from '{inp}'")
|
||||
x = np.load(inp.joinpath("xp.npy"))
|
||||
t = np.load(inp.joinpath("tsec.npy"))
|
||||
|
||||
botl = np.load(inp.joinpath("botl.npy"))
|
||||
watl = np.load(inp.joinpath("watl.npy"))
|
||||
vel = np.load(inp.joinpath("vel.npy"))
|
||||
|
||||
x0 = config.getint("post", "x0")
|
||||
arg_x0 = np.abs(x - x0).argmin()
|
||||
t0 = config.getfloat("post", "t0")
|
||||
arg_t0 = np.abs(t - t0).argmin()
|
||||
dt = np.diff(t).mean()
|
||||
f = 1 / dt
|
||||
|
||||
idx = [arg_x0 - 5, arg_x0, arg_x0 + 7]
|
||||
wl = watl[arg_t0:, idx]
|
||||
|
||||
res = reflex3S(*wl.T, *x[idx], botl[idx].mean(), f, 0.02, 0.2)
|
||||
f_, ai_, ar_ = reflex3s(wl.T, x[idx], botl[idx].mean(), f)
|
||||
ai, ar, _, _, _, _, fre = res
|
||||
|
||||
out = pathlib.Path(config.get("post", "out")).joinpath(f"t{t0}x{x0}")
|
||||
log.info(f"Saving plots in '{out}'")
|
||||
out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
plt.plot(fre, np.asarray(ar) / np.asarray(ai))
|
||||
plt.xlim((0, 0.3))
|
||||
plt.ylim((0, 1))
|
||||
plt.savefig(out.joinpath("reflex3s_pa.pdf"))
|
||||
plt.clf()
|
||||
plt.plot(f_, ar_ / ai_)
|
||||
plt.xlim((0, 0.3))
|
||||
plt.ylim((0, 1))
|
||||
plt.savefig(out.joinpath("reflex3s.pdf"))
|
||||
|
||||
# pressk = np.load(inp.joinpath("pressk.npy"))
|
||||
# press = pressk[:, 1, :]
|
||||
# res = PUV_dam(vel[arg_t0:, 0, 500], press[arg_t0:, 500], botl[500], f, botl[500]/2, botl[500]/2)
|
||||
# print(res)
|
|
@ -5,43 +5,41 @@ from scipy import optimize as opti
|
|||
|
||||
|
||||
def reflex3s(eta, x, h, f):
|
||||
#_welch = [sgl.welch(z, f) for z in eta]
|
||||
|
||||
#eta_psd = np.stack([_w[1] for _w in _welch])
|
||||
#f_psd = _welch[0][0]
|
||||
eta_psd = np.stack([fft.rfft(z) for z in eta])
|
||||
f_psd = fft.rfftfreq(eta.shape[1])
|
||||
f_psd = fft.rfftfreq(eta.shape[1], 1 / f)
|
||||
|
||||
eta_amp = np.abs(eta_psd) / eta_psd.shape[1]
|
||||
eta_amp = np.abs(eta_psd) / (f_psd.size - 1)
|
||||
eta_phase = np.angle(eta_psd)
|
||||
|
||||
g = 9.81
|
||||
k = np.asarray([opti.root_scalar(
|
||||
f=lambda k: k * np.tanh(k) - (2 * np.pi * f) ** 2 / g * h,
|
||||
fprime=lambda k: np.tanh(k) + k * (1 - np.tanh(k)) ** 2,
|
||||
x0=0.2,
|
||||
).root for f in f_psd])
|
||||
|
||||
dx = np.roll(x, 1) - x
|
||||
dphi = np.roll(eta_phase, 1, axis=0) - eta_phase
|
||||
|
||||
ai = np.sqrt(
|
||||
eta_amp**2
|
||||
+ np.roll(eta_amp, 1, axis=0)**2
|
||||
- 2
|
||||
* eta_amp
|
||||
* np.roll(eta_amp, 1, axis=0)
|
||||
* np.cos(dphi - k * dx[:, None])
|
||||
/ (2 * np.abs(np.sin(k * dx[:, None])))
|
||||
)
|
||||
ar = np.sqrt(
|
||||
eta_amp**2
|
||||
+ np.roll(eta_amp, 1, axis=0)**2
|
||||
- 2
|
||||
* eta_amp
|
||||
* np.roll(eta_amp, 1, axis=0)
|
||||
* np.cos(dphi + k * dx[:, None])
|
||||
/ (2 * np.abs(np.sin(k * dx[:, None])))
|
||||
k = np.asarray(
|
||||
[
|
||||
opti.root_scalar(
|
||||
f=lambda k: k * np.tanh(k) - (2 * np.pi * f) ** 2 / g * h,
|
||||
fprime=lambda k: np.tanh(k) + k * (1 - np.tanh(k) ** 2),
|
||||
x0=0.5,
|
||||
).root
|
||||
/ h
|
||||
for f in f_psd
|
||||
]
|
||||
)
|
||||
|
||||
return f_psd, ar / ai
|
||||
s1 = 1 + np.exp(2j * k * (x[1] - x[0])) + np.exp(2j * k * (x[2] - x[0]))
|
||||
s2 = 1 + np.exp(-2j * k * (x[1] - x[0])) + np.exp(-2j * k * (x[2] - x[0]))
|
||||
s12 = 3
|
||||
s3 = (
|
||||
eta_amp[0] * np.exp(-1j * (eta_phase[0]))
|
||||
+ eta_amp[1] * np.exp(-1j * (eta_phase[1] - k * (x[1] - x[0])))
|
||||
+ eta_amp[2] * np.exp(-1j * (eta_phase[2] - k * (x[2] - x[0])))
|
||||
)
|
||||
s4 = (
|
||||
eta_amp[0] * np.exp(-1j * (eta_phase[0]))
|
||||
+ eta_amp[1] * np.exp(-1j * (eta_phase[1] + k * (x[1] - x[0])))
|
||||
+ eta_amp[2] * np.exp(-1j * (eta_phase[2] + k * (x[2] - x[0])))
|
||||
)
|
||||
s5 = s1 * s2 - s12**2
|
||||
|
||||
ai = np.abs((s2 * s3 - s12 * s4) / s5)
|
||||
ar = np.abs((s1 * s4 - s12 * s3) / s5)
|
||||
|
||||
return f_psd, ai, ar
|
||||
|
|
Loading…
Reference in a new issue