Black + improvements on pa reflex/puv
This commit is contained in:
parent
2f16aef816
commit
58ed9a4716
2 changed files with 313 additions and 236 deletions
|
@ -1,4 +1,4 @@
|
|||
import math
|
||||
import math
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
|
@ -16,83 +16,99 @@ from scipy.fftpack import fft, ifft
|
|||
from scipy.signal import detrend
|
||||
from numpy import angle
|
||||
|
||||
# fonction moyenne glissante
|
||||
def lissage(Lx,Ly,p):
|
||||
'''Fonction qui débruite une courbe par une moyenne glissante
|
||||
sur 2P+1 points'''
|
||||
Lxout=[]
|
||||
Lyout=[]
|
||||
Lxout = Lx[p: -p]
|
||||
for index in range(p, len(Ly)-p):
|
||||
average = np.mean(Ly[index-p : index+p+1])
|
||||
Lyout.append(average)
|
||||
return Lxout,Lyout
|
||||
g = 9.81
|
||||
|
||||
# h = profondeur locale
|
||||
#fs = fréquence echantillonage
|
||||
# fs = fréquence echantillonage
|
||||
# zmesP = profondeur de mesure de la pression
|
||||
# zmesU = profondeur de mesure de la vitesse
|
||||
def PUV_dam(u,p,h,fs,zmesP,zmesU):
|
||||
#u = detrend(u)
|
||||
#p = detrend(p)
|
||||
def PUV_dam(u, p, h, fs, zmesP, zmesU):
|
||||
# u = detrend(u)
|
||||
# p = detrend(p)
|
||||
ampliseuil = 0.001
|
||||
N = len(u)
|
||||
delta = fs
|
||||
#transformée de fourrier
|
||||
# transformée de fourrier
|
||||
Yu = fft(u)
|
||||
Yp = fft(p)
|
||||
nyquist = 1/2
|
||||
#Fu_xb = ((1:N/2)-1)/(N/2)/deltat*nyquist
|
||||
xf = np.linspace(0.0, 1.0/(2.0/fs), N//2)
|
||||
Ampu = np.abs(Yu[1:N//2])/(N/2.0)
|
||||
Ampp = np.abs(Yp[1:N//2])/(N/2.0)
|
||||
#pas de frequence deltaf
|
||||
deltaf=1/(N/2)/delta*nyquist;
|
||||
#phase
|
||||
ThetaU=angle(Yu[1:N//2]);
|
||||
ThetaP=angle(Yp[1:N//2]);
|
||||
#calcul du coefficient de reflexion
|
||||
nbf=len(xf);
|
||||
if max(p) > 0 :
|
||||
#si pas de données de pression, jsute Sheremet
|
||||
#attention : on commence par le deuxieme point, le premier correspondant a frequence nulle
|
||||
iicutoff_xb=max(min(np.where(xf>0.5))) #length(Fu_xb)) ?
|
||||
#calcul de l'amplitude en deca de la frequence de coupure
|
||||
nyquist = 1 / 2
|
||||
# Fu_xb = ((1:N/2)-1)/(N/2)/deltat*nyquist
|
||||
xf = np.linspace(0.0, 1.0 / (2.0 / fs), N // 2)
|
||||
Ampu = np.abs(Yu[1 : N // 2]) / (N / 2.0)
|
||||
Ampp = np.abs(Yp[1 : N // 2]) / (N / 2.0)
|
||||
# pas de frequence deltaf
|
||||
deltaf = 1 / (N / 2) / delta * nyquist
|
||||
# phase
|
||||
ThetaU = angle(Yu[1 : N // 2])
|
||||
ThetaP = angle(Yp[1 : N // 2])
|
||||
# calcul du coefficient de reflexion
|
||||
nbf = len(xf)
|
||||
if max(p) > 0:
|
||||
# si pas de données de pression, jsute Sheremet
|
||||
# attention : on commence par le deuxieme point, le premier correspondant a frequence nulle
|
||||
iicutoff_xb = max(min(np.where(xf > 0.5))) # length(Fu_xb)) ?
|
||||
# calcul de l'amplitude en deca de la frequence de coupure
|
||||
k_xb = []
|
||||
ii = 1
|
||||
while ii<iicutoff_xb :
|
||||
k_xb[ii] = newtonpplus(xf[ii],h,0);
|
||||
a1=Ampu[ii];
|
||||
a3=Ampp[ii];
|
||||
phi1=ThetaU[ii];
|
||||
phi3=ThetaP[ii];
|
||||
omega[ii]=2*pi*xf[ii];
|
||||
cc=omega[ii]*cosh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h);
|
||||
ccp=omega[ii]*cosh(xf[ii]*(zmesP+h))/sinh(xf[ii]*h);
|
||||
cs=omega[ii]*sinh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h);
|
||||
#Procedure de calcul des ai et ar sans courant
|
||||
ccc[ii]=cc;
|
||||
ccs[ii]=cs;
|
||||
cccp[ii]=ccp;
|
||||
#calcul des amplitudes des ondes incidentes a partir de uhoriz et p
|
||||
aincident13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*xf[ii]*xf[ii]/(omega[ii]*omega[ii]*ccp*ccp)+2*a1*a3*g*k_xb[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii]))
|
||||
areflechi13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*k_xb[ii]*k_xb[ii]/(omega[ii]*omega[ii]*ccp*ccp)-2*a1*a3*g*xf[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii]))
|
||||
cv=g*xf[ii]/(omega[ii]*ccp)
|
||||
cp=1/cc
|
||||
aprog[ii]= a3/(g*xf[ii]/(omega[ii]*ccp)); #hypothese progressive Drevard et al |u|/Cv
|
||||
#aprog(ii)= a1/cp;
|
||||
#|p|/Cp
|
||||
if aincident13[ii]<0.18*ampliseuil:
|
||||
r13[ii]=0
|
||||
omega = []
|
||||
ccc, ccs, cccp = [], [], []
|
||||
aincident13, areflechi13 = [], []
|
||||
aprog = []
|
||||
r13 = []
|
||||
ii = 0
|
||||
while ii < iicutoff_xb:
|
||||
k_xb.append(newtonpplus(xf[ii], h, 0))
|
||||
a1 = Ampu[ii]
|
||||
a3 = Ampp[ii]
|
||||
phi1 = ThetaU[ii]
|
||||
phi3 = ThetaP[ii]
|
||||
omega.append(2 * np.pi * xf[ii])
|
||||
cc = omega[ii] * np.cosh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
|
||||
ccp = omega[ii] * np.cosh(xf[ii] * (zmesP + h)) / np.sinh(xf[ii] * h)
|
||||
cs = omega[ii] * np.sinh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
|
||||
# Procedure de calcul des ai et ar sans courant
|
||||
ccc.append(cc)
|
||||
ccs.append(cs)
|
||||
cccp.append(ccp)
|
||||
# calcul des amplitudes des ondes incidentes a partir de uhoriz et p
|
||||
aincident13.append(0.5 * np.sqrt(
|
||||
a1 * a1 / (cc * cc)
|
||||
+ a3
|
||||
* a3
|
||||
* g
|
||||
* g
|
||||
* xf[ii]
|
||||
* xf[ii]
|
||||
/ (omega[ii] * omega[ii] * ccp * ccp)
|
||||
+ 2 * a1 * a3 * g * k_xb[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
|
||||
))
|
||||
areflechi13.append(0.5 * np.sqrt(
|
||||
a1 * a1 / (cc * cc)
|
||||
+ a3
|
||||
* a3
|
||||
* g
|
||||
* g
|
||||
* k_xb[ii]
|
||||
* k_xb[ii]
|
||||
/ (omega[ii] * omega[ii] * ccp * ccp)
|
||||
- 2 * a1 * a3 * g * xf[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
|
||||
))
|
||||
cv = g * xf[ii] / (omega[ii] * ccp)
|
||||
cp = 1 / cc
|
||||
aprog.append(a3 / (g * xf[ii] / (omega[ii] * ccp)))
|
||||
# hypothese progressive Drevard et al |u|/Cv
|
||||
# aprog(ii)= a1/cp;
|
||||
# |p|/Cp
|
||||
if aincident13[ii] < 0.18 * ampliseuil:
|
||||
r13.append(0)
|
||||
else:
|
||||
r13[ii]=areflechi13[ii]/aincident13[ii]
|
||||
#calcul des energies incidente et reflechie sans ponderation avec les voisins
|
||||
Eprog=0.5*aprog**2/deltaf;
|
||||
Eixb=0.5*aincident13**2/deltaf
|
||||
Erxb=0.5*areflechi13**2/deltaf
|
||||
F=Fu_xb[1:iicutoff_xb]
|
||||
return Eixb,Erxb,Eprog,F
|
||||
'test'
|
||||
r13.append(areflechi13[ii] / aincident13[ii])
|
||||
# calcul des energies incidente et reflechie sans ponderation avec les voisins
|
||||
Eprog = 0.5 * aprog**2 / deltaf
|
||||
Eixb = 0.5 * aincident13**2 / deltaf
|
||||
Erxb = 0.5 * areflechi13**2 / deltaf
|
||||
F = Fu_xb[1:iicutoff_xb]
|
||||
return Eixb, Erxb, Eprog, F
|
||||
"test"
|
||||
|
||||
|
||||
# Calcul du vecteur d'onde en prÈsence d'un courant
|
||||
|
@ -100,19 +116,29 @@ def PUV_dam(u,p,h,fs,zmesP,zmesU):
|
|||
# a partir de la frÈquence f, la profondeur d'eau h et
|
||||
# la vitesse u du courant
|
||||
# kh : vecteur d'onde * profondeur d'eau
|
||||
def newtonpplus(f,h,u) :
|
||||
def newtonpplus(f, h, u):
|
||||
# calcul de k:
|
||||
g = 9.81
|
||||
kh = 0.5
|
||||
x = 0.001
|
||||
u=-u
|
||||
while (abs((kh - x)/x) > 0.00000001) :
|
||||
u = -u
|
||||
i = 0
|
||||
while abs((kh - x) / x) > 0.00001:
|
||||
i += 1
|
||||
if i > 10**5:
|
||||
sys.exit(1)
|
||||
x = kh
|
||||
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x)
|
||||
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x)
|
||||
kh = x - (fx/fprimx)
|
||||
k = kh/h
|
||||
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
|
||||
2 * math.pi * f - (u / h) * x
|
||||
)
|
||||
fprimx = (
|
||||
math.tanh(x)
|
||||
+ x * (1 - (math.tanh(x)) ** 2)
|
||||
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
|
||||
)
|
||||
kh = x - (fx / fprimx)
|
||||
k = kh / h
|
||||
return k
|
||||
|
||||
# fin du calcul de k
|
||||
|
||||
# fin du calcul de k
|
||||
|
|
|
@ -8,54 +8,68 @@ from matplotlib import animation
|
|||
import cmath
|
||||
from scipy.fft import fft
|
||||
|
||||
def newtonpplus(f,h,u) :
|
||||
|
||||
def newtonpplus(f, h, u):
|
||||
# calcul de k:
|
||||
g = 9.81
|
||||
kh = 0.5
|
||||
x = 0.001
|
||||
u=-u
|
||||
while (abs((kh - x)/x) > 0.00000001) :
|
||||
u = -u
|
||||
while abs((kh - x) / x) > 0.00000001:
|
||||
x = kh
|
||||
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x)
|
||||
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x)
|
||||
kh = x - (fx/fprimx)
|
||||
k = kh/h
|
||||
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
|
||||
2 * math.pi * f - (u / h) * x
|
||||
)
|
||||
fprimx = (
|
||||
math.tanh(x)
|
||||
+ x * (1 - (math.tanh(x)) ** 2)
|
||||
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
|
||||
)
|
||||
kh = x - (fx / fprimx)
|
||||
k = kh / h
|
||||
return k
|
||||
|
||||
def newtonpmoins(f,h,u0) :
|
||||
|
||||
def newtonpmoins(f, h, u0):
|
||||
# calcul de k:
|
||||
g = 9.81;
|
||||
kh = 0.5;
|
||||
x = 0.01;
|
||||
x = 6*h;
|
||||
|
||||
while (np.abs((kh - x)/x) > 0.00000001):
|
||||
x = kh;
|
||||
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u0/h)*x)*(2*math.pi*f-(u0/h)*x);
|
||||
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u0/g)*(2*math.pi*f-(u0/h)*x);
|
||||
kh = x - (fx/fprimx);
|
||||
k = kh/h
|
||||
g = 9.81
|
||||
kh = 0.5
|
||||
x = 0.01
|
||||
x = 6 * h
|
||||
|
||||
while np.abs((kh - x) / x) > 0.00000001:
|
||||
x = kh
|
||||
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u0 / h) * x) * (
|
||||
2 * math.pi * f - (u0 / h) * x
|
||||
)
|
||||
fprimx = (
|
||||
math.tanh(x)
|
||||
+ x * (1 - (math.tanh(x)) ** 2)
|
||||
+ (2 * u0 / g) * (2 * math.pi * f - (u0 / h) * x)
|
||||
)
|
||||
kh = x - (fx / fprimx)
|
||||
k = kh / h
|
||||
return k
|
||||
|
||||
#Calcul du vecteur d'onde a partir de la frÈquence
|
||||
#kh : vecteur d'onde * profondeur d'eau
|
||||
def newtonpropa(hi,f):
|
||||
|
||||
# Calcul du vecteur d'onde a partir de la frÈquence
|
||||
# kh : vecteur d'onde * profondeur d'eau
|
||||
def newtonpropa(hi, f):
|
||||
# calcul de k:
|
||||
g=9.81;
|
||||
si = (2*math.pi*f)**2/g;
|
||||
kh = 0.5;
|
||||
x = 0.001;
|
||||
while (np.abs((kh - x)/x) > 0.00000001) :
|
||||
x = kh;
|
||||
fx = x*math.tanh(x) - si*hi;
|
||||
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2);
|
||||
kh = x - (fx/fprimx);
|
||||
kpropa = kh/hi;
|
||||
g = 9.81
|
||||
si = (2 * math.pi * f) ** 2 / g
|
||||
kh = 0.5
|
||||
x = 0.001
|
||||
while np.abs((kh - x) / x) > 0.00000001:
|
||||
x = kh
|
||||
fx = x * math.tanh(x) - si * hi
|
||||
fprimx = math.tanh(x) + x * (1 - (math.tanh(x)) ** 2)
|
||||
kh = x - (fx / fprimx)
|
||||
kpropa = kh / hi
|
||||
return kpropa
|
||||
|
||||
|
||||
|
||||
def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
|
||||
def reflex3S(x1, x2, x3, xs1, xs2, xs3, h, mean_freq, fmin, fmax):
|
||||
# Analyse avec transformee de fourier d un signal en sinus
|
||||
# calcul du coefficient de reflexion en presence d un courant u
|
||||
# tinit : temps initial
|
||||
|
@ -69,77 +83,76 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
|
|||
# ampliseuil : amplitude minimale des maxima recherches
|
||||
# valeur du courant (u > 0 correspond a un courant dans le sens
|
||||
# des x croissants)
|
||||
#u=0;
|
||||
|
||||
# u=0;
|
||||
|
||||
# h profondeur d'eau
|
||||
|
||||
#hold on;
|
||||
#fech=16;
|
||||
#fmin=0.1;fmax=4;ampliseuil=0.005;
|
||||
#nbrepoints=fech*T*1000;
|
||||
#deltat=1./fech;
|
||||
#tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
|
||||
|
||||
#aitheo=1;artheo=0.4;
|
||||
#h=3;
|
||||
#T=1.33;
|
||||
#ftheo=1/T;
|
||||
#fech=16;
|
||||
#fmin=0.1;fmax=4;ampliseuil=0.005;
|
||||
#nbrepoints=fech*T*1000;
|
||||
#deltat=1./fech;
|
||||
#tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
|
||||
#t = [tinit:deltat:tfinal];
|
||||
#ktheo = newtonpropa(ftheo,h);
|
||||
|
||||
#Positions respectives sondes amonts entr'elles et sondes aval
|
||||
|
||||
# hold on;
|
||||
# fech=16;
|
||||
# fmin=0.1;fmax=4;ampliseuil=0.005;
|
||||
# nbrepoints=fech*T*1000;
|
||||
# deltat=1./fech;
|
||||
# tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
|
||||
|
||||
# aitheo=1;artheo=0.4;
|
||||
# h=3;
|
||||
# T=1.33;
|
||||
# ftheo=1/T;
|
||||
# fech=16;
|
||||
# fmin=0.1;fmax=4;ampliseuil=0.005;
|
||||
# nbrepoints=fech*T*1000;
|
||||
# deltat=1./fech;
|
||||
# tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
|
||||
# t = [tinit:deltat:tfinal];
|
||||
# ktheo = newtonpropa(ftheo,h);
|
||||
|
||||
# Positions respectives sondes amonts entr'elles et sondes aval
|
||||
# entr'elles
|
||||
|
||||
|
||||
# xs1=0;xs2=0.80;xs3=1.30;
|
||||
|
||||
#ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL
|
||||
ampliseuil=0.005;
|
||||
|
||||
# ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL
|
||||
ampliseuil = 0.005
|
||||
#'check'
|
||||
#pause
|
||||
#PAS DE TEMPS
|
||||
deltat1=1/mean_freq;
|
||||
deltat2=1/mean_freq;
|
||||
deltat3=1/mean_freq;
|
||||
#transformees de Fourier
|
||||
Y1 = fft(x1,len(x1));
|
||||
N1 = len(Y1);
|
||||
Y2 = fft(x2,len(x2));
|
||||
N2 = len(Y2);
|
||||
Y3 = fft(x3,len(x3));
|
||||
N3 = len(Y3);
|
||||
#amplitudes normalisees, soit coef de fourier
|
||||
amplitude1=np.abs(Y1[1:N1//2])/(N1//2);
|
||||
nyquist = 1/2;
|
||||
freq1 = (np.arange(1, (N1//2)+1, 1)-1)/(N1//2)/deltat1*nyquist;
|
||||
amplitude2=np.abs(Y2[1:N2//2])/(N2//2);
|
||||
nyquist = 1/2;
|
||||
freq2 = (np.arange(1, (N2//2)+1, 1)-1)/(N2//2)/deltat2*nyquist;
|
||||
amplitude3=np.abs(Y3[1:N3//2])/(N3//2);
|
||||
nyquist = 1/2;
|
||||
freq3 = (np.arange(1, (N3//2)+1, 1)-1)/(N3//2)/deltat3*nyquist;
|
||||
#recherche de la phase
|
||||
theta1=np.angle(Y1[1:N1//2]);
|
||||
theta2=np.angle(Y2[1:N2//2]);
|
||||
theta3=np.angle(Y3[1:N3//2]);
|
||||
#pas de frequence deltaf
|
||||
deltaf=1/(N1//2)/deltat1*nyquist;
|
||||
nbrefreq=len(freq1);
|
||||
#Caracteristiques fondamentaux,sondes canaux 1 et 3
|
||||
#distances entre les sondes
|
||||
x12=xs2-xs1;
|
||||
x13=xs3-xs1;
|
||||
x23=xs3-xs2;
|
||||
#Debut calcul des coefficients de reflexion
|
||||
indmin=np.min(np.where(freq1>0.02));
|
||||
indfmin=np.min(np.where(freq1>fmin));
|
||||
indfmax=np.max(np.where(freq1<fmax));
|
||||
|
||||
|
||||
# pause
|
||||
# PAS DE TEMPS
|
||||
deltat1 = 1 / mean_freq
|
||||
deltat2 = 1 / mean_freq
|
||||
deltat3 = 1 / mean_freq
|
||||
# transformees de Fourier
|
||||
Y1 = fft(x1, len(x1))
|
||||
N1 = len(Y1)
|
||||
Y2 = fft(x2, len(x2))
|
||||
N2 = len(Y2)
|
||||
Y3 = fft(x3, len(x3))
|
||||
N3 = len(Y3)
|
||||
# amplitudes normalisees, soit coef de fourier
|
||||
amplitude1 = np.abs(Y1[1 : N1 // 2]) / (N1 // 2)
|
||||
nyquist = 1 / 2
|
||||
freq1 = (np.arange(1, (N1 // 2) + 1, 1) - 1) / (N1 // 2) / deltat1 * nyquist
|
||||
amplitude2 = np.abs(Y2[1 : N2 // 2]) / (N2 // 2)
|
||||
nyquist = 1 / 2
|
||||
freq2 = (np.arange(1, (N2 // 2) + 1, 1) - 1) / (N2 // 2) / deltat2 * nyquist
|
||||
amplitude3 = np.abs(Y3[1 : N3 // 2]) / (N3 // 2)
|
||||
nyquist = 1 / 2
|
||||
freq3 = (np.arange(1, (N3 // 2) + 1, 1) - 1) / (N3 // 2) / deltat3 * nyquist
|
||||
# recherche de la phase
|
||||
theta1 = np.angle(Y1[1 : N1 // 2])
|
||||
theta2 = np.angle(Y2[1 : N2 // 2])
|
||||
theta3 = np.angle(Y3[1 : N3 // 2])
|
||||
# pas de frequence deltaf
|
||||
deltaf = 1 / (N1 // 2) / deltat1 * nyquist
|
||||
nbrefreq = len(freq1)
|
||||
# Caracteristiques fondamentaux,sondes canaux 1 et 3
|
||||
# distances entre les sondes
|
||||
x12 = xs2 - xs1
|
||||
x13 = xs3 - xs1
|
||||
x23 = xs3 - xs2
|
||||
# Debut calcul des coefficients de reflexion
|
||||
indmin = np.min(np.where(freq1 > 0.02))
|
||||
indfmin = np.min(np.where(freq1 > fmin))
|
||||
indfmax = np.max(np.where(freq1 < fmax))
|
||||
|
||||
T = []
|
||||
fre = []
|
||||
aincident12 = []
|
||||
|
@ -155,66 +168,104 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
|
|||
Ereflechi123 = []
|
||||
count = 0
|
||||
for jj in np.arange(indfmin, indfmax, 1):
|
||||
f=freq1[jj]
|
||||
#periode
|
||||
T.append(1/f)
|
||||
f = freq1[jj]
|
||||
# periode
|
||||
T.append(1 / f)
|
||||
fre.append(f)
|
||||
#calcul des vecteurs d'onde
|
||||
kplus = newtonpplus(f,h,0)
|
||||
kmoins = newtonpmoins(f,h,0)
|
||||
k = newtonpropa(h,f)
|
||||
deltaku=k-(kmoins+kplus)/2
|
||||
#amplitude des signaux pour la frequence f:
|
||||
a1=amplitude1[jj]
|
||||
a2=amplitude2[jj]
|
||||
a3=amplitude3[jj]
|
||||
#dephasages entre les signaux experimentaux des 3 sondes amont
|
||||
phi1=theta1[jj]
|
||||
phi2=theta2[jj]
|
||||
phi3=theta3[jj]
|
||||
phi12=phi2-phi1
|
||||
phi13=phi3-phi1
|
||||
phi23=phi3-phi2
|
||||
#evolution theorique entre les sondes de la phase pour une onde progressive
|
||||
delta12p= -kplus*x12
|
||||
delta13p= -kplus*x13
|
||||
delta23p= -kplus*x23
|
||||
delta12m= -kmoins*x12
|
||||
delta13m= -kmoins*x13
|
||||
delta23m= -kmoins*x23
|
||||
#calcul du coefficient de reflexion a partir des sondes 1 et 2
|
||||
aincident12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12+delta12p))/(2*np.abs(math.sin((delta12p+delta12m)/2))))
|
||||
areflechi12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12-delta12m))/(2*np.abs(math.sin((delta12p+delta12m)/2))))
|
||||
#r12(jj)=areflechi12(jj)/aincident12(jj);
|
||||
#calcul du coefficient de reflexion a partir des sondes 2 et 3
|
||||
aincident23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23+delta23p))/(2*np.abs(math.sin((delta23p+delta23m)/2))))
|
||||
areflechi23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23-delta23m))/(2*np.abs(math.sin((delta23p+delta23m)/2))))
|
||||
#r23(jj)=areflechi23(jj)/aincident23(jj);
|
||||
#calcul du coefficient de reflexion a partir des sondes 1 et 3
|
||||
aincident13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13+delta13p))/(2*np.abs(math.sin((delta13p+delta13m)/2))))
|
||||
areflechi13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13-delta13m))/(2*np.abs(math.sin((delta13p+delta13m)/2))))
|
||||
#r13.append(areflechi13[jj]/aincident13[jj])
|
||||
#calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres
|
||||
delta1m=0
|
||||
delta2m=delta12m
|
||||
delta3m=delta13m
|
||||
delta1p=0
|
||||
delta2p=delta12p
|
||||
delta3p=delta13p
|
||||
s1=cmath.exp(-1j*2*delta1m)+cmath.exp(-1j*2*delta2m)+cmath.exp(-1j*2*delta3m)
|
||||
s2=cmath.exp(+1j*2*delta1p)+cmath.exp(+1j*2*delta2p)+cmath.exp(+1j*2*delta3p)
|
||||
s12=cmath.exp(1j*(delta1p-delta1m))+cmath.exp(1j*(delta2p-delta2m))+cmath.exp(1j*(delta3p-delta3m))
|
||||
s3=a1*cmath.exp(-1j*(phi1+delta1m))+a2*cmath.exp(-1j*(phi2+delta2m))+a3*cmath.exp(-1j*(phi3+delta3m))
|
||||
s4=a1*cmath.exp(-1j*(phi1-delta1p))+a2*cmath.exp(-1j*(phi2-delta2p))+a3*cmath.exp(-1j*(phi3-delta3p))
|
||||
s5=s1*s2-s12*s12
|
||||
ai.append(abs((s2*s3-s12*s4)/s5))
|
||||
ar.append(abs((s1*s4-s12*s3)/s5))
|
||||
#refl[jj]=ar[jj]/ai[jj];
|
||||
#Calcul de l'energie, on divise par le pas de frequence deltaf
|
||||
#calcul de l'energie incidente sans ponderation avec les voisins
|
||||
Eincident123.append(0.5*ai[count]*ai[count]/deltaf)
|
||||
Ereflechi123.append(0.5*ar[count]*ar[count]/deltaf)
|
||||
count+=1
|
||||
# calcul des vecteurs d'onde
|
||||
kplus = newtonpplus(f, h, 0)
|
||||
kmoins = newtonpmoins(f, h, 0)
|
||||
k = newtonpropa(h, f)
|
||||
deltaku = k - (kmoins + kplus) / 2
|
||||
# amplitude des signaux pour la frequence f:
|
||||
a1 = amplitude1[jj]
|
||||
a2 = amplitude2[jj]
|
||||
a3 = amplitude3[jj]
|
||||
# dephasages entre les signaux experimentaux des 3 sondes amont
|
||||
phi1 = theta1[jj]
|
||||
phi2 = theta2[jj]
|
||||
phi3 = theta3[jj]
|
||||
phi12 = phi2 - phi1
|
||||
phi13 = phi3 - phi1
|
||||
phi23 = phi3 - phi2
|
||||
# evolution theorique entre les sondes de la phase pour une onde progressive
|
||||
delta12p = -kplus * x12
|
||||
delta13p = -kplus * x13
|
||||
delta23p = -kplus * x23
|
||||
delta12m = -kmoins * x12
|
||||
delta13m = -kmoins * x13
|
||||
delta23m = -kmoins * x23
|
||||
# calcul du coefficient de reflexion a partir des sondes 1 et 2
|
||||
aincident12.append(
|
||||
math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 + delta12p))
|
||||
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
|
||||
)
|
||||
areflechi12.append(
|
||||
math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 - delta12m))
|
||||
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
|
||||
)
|
||||
# r12(jj)=areflechi12(jj)/aincident12(jj);
|
||||
# calcul du coefficient de reflexion a partir des sondes 2 et 3
|
||||
aincident23.append(
|
||||
math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 + delta23p))
|
||||
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
|
||||
)
|
||||
areflechi23.append(
|
||||
math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 - delta23m))
|
||||
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
|
||||
)
|
||||
# r23(jj)=areflechi23(jj)/aincident23(jj);
|
||||
# calcul du coefficient de reflexion a partir des sondes 1 et 3
|
||||
aincident13.append(
|
||||
math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 + delta13p))
|
||||
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
|
||||
)
|
||||
areflechi13.append(
|
||||
math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 - delta13m))
|
||||
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
|
||||
)
|
||||
# r13.append(areflechi13[jj]/aincident13[jj])
|
||||
# calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres
|
||||
delta1m = 0
|
||||
delta2m = delta12m
|
||||
delta3m = delta13m
|
||||
delta1p = 0
|
||||
delta2p = delta12p
|
||||
delta3p = delta13p
|
||||
s1 = (
|
||||
cmath.exp(-1j * 2 * delta1m)
|
||||
+ cmath.exp(-1j * 2 * delta2m)
|
||||
+ cmath.exp(-1j * 2 * delta3m)
|
||||
)
|
||||
s2 = (
|
||||
cmath.exp(+1j * 2 * delta1p)
|
||||
+ cmath.exp(+1j * 2 * delta2p)
|
||||
+ cmath.exp(+1j * 2 * delta3p)
|
||||
)
|
||||
s12 = (
|
||||
cmath.exp(1j * (delta1p - delta1m))
|
||||
+ cmath.exp(1j * (delta2p - delta2m))
|
||||
+ cmath.exp(1j * (delta3p - delta3m))
|
||||
)
|
||||
s3 = (
|
||||
a1 * cmath.exp(-1j * (phi1 + delta1m))
|
||||
+ a2 * cmath.exp(-1j * (phi2 + delta2m))
|
||||
+ a3 * cmath.exp(-1j * (phi3 + delta3m))
|
||||
)
|
||||
s4 = (
|
||||
a1 * cmath.exp(-1j * (phi1 - delta1p))
|
||||
+ a2 * cmath.exp(-1j * (phi2 - delta2p))
|
||||
+ a3 * cmath.exp(-1j * (phi3 - delta3p))
|
||||
)
|
||||
s5 = s1 * s2 - s12 * s12
|
||||
|
||||
ai.append(abs((s2 * s3 - s12 * s4) / s5))
|
||||
ar.append(abs((s1 * s4 - s12 * s3) / s5))
|
||||
# refl[jj]=ar[jj]/ai[jj];
|
||||
# Calcul de l'energie, on divise par le pas de frequence deltaf
|
||||
# calcul de l'energie incidente sans ponderation avec les voisins
|
||||
Eincident123.append(0.5 * ai[count] * ai[count] / deltaf)
|
||||
Ereflechi123.append(0.5 * ar[count] * ar[count] / deltaf)
|
||||
count += 1
|
||||
|
||||
return ai,ar,Eincident123, Ereflechi123, indfmin, indfmax, fre
|
||||
return ai, ar, Eincident123, Ereflechi123, indfmin, indfmax, fre
|
||||
|
|
Loading…
Reference in a new issue