1
Fork 0

Black + improvements on pa reflex/puv

This commit is contained in:
Edgar P. Burkhart 2022-04-01 17:11:37 +02:00
parent 2f16aef816
commit 58ed9a4716
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
2 changed files with 313 additions and 236 deletions

View file

@ -16,17 +16,7 @@ from scipy.fftpack import fft, ifft
from scipy.signal import detrend from scipy.signal import detrend
from numpy import angle from numpy import angle
# fonction moyenne glissante g = 9.81
def lissage(Lx,Ly,p):
'''Fonction qui débruite une courbe par une moyenne glissante
sur 2P+1 points'''
Lxout=[]
Lyout=[]
Lxout = Lx[p: -p]
for index in range(p, len(Ly)-p):
average = np.mean(Ly[index-p : index+p+1])
Lyout.append(average)
return Lxout,Lyout
# h = profondeur locale # h = profondeur locale
# fs = fréquence echantillonage # fs = fréquence echantillonage
@ -47,52 +37,78 @@ def PUV_dam(u,p,h,fs,zmesP,zmesU):
Ampu = np.abs(Yu[1 : N // 2]) / (N / 2.0) Ampu = np.abs(Yu[1 : N // 2]) / (N / 2.0)
Ampp = np.abs(Yp[1 : N // 2]) / (N / 2.0) Ampp = np.abs(Yp[1 : N // 2]) / (N / 2.0)
# pas de frequence deltaf # pas de frequence deltaf
deltaf=1/(N/2)/delta*nyquist; deltaf = 1 / (N / 2) / delta * nyquist
# phase # phase
ThetaU=angle(Yu[1:N//2]); ThetaU = angle(Yu[1 : N // 2])
ThetaP=angle(Yp[1:N//2]); ThetaP = angle(Yp[1 : N // 2])
# calcul du coefficient de reflexion # calcul du coefficient de reflexion
nbf=len(xf); nbf = len(xf)
if max(p) > 0: if max(p) > 0:
# si pas de données de pression, jsute Sheremet # si pas de données de pression, jsute Sheremet
# attention : on commence par le deuxieme point, le premier correspondant a frequence nulle # attention : on commence par le deuxieme point, le premier correspondant a frequence nulle
iicutoff_xb = max(min(np.where(xf > 0.5))) # length(Fu_xb)) ? iicutoff_xb = max(min(np.where(xf > 0.5))) # length(Fu_xb)) ?
# calcul de l'amplitude en deca de la frequence de coupure # calcul de l'amplitude en deca de la frequence de coupure
k_xb = [] k_xb = []
ii = 1 omega = []
ccc, ccs, cccp = [], [], []
aincident13, areflechi13 = [], []
aprog = []
r13 = []
ii = 0
while ii < iicutoff_xb: while ii < iicutoff_xb:
k_xb[ii] = newtonpplus(xf[ii],h,0); k_xb.append(newtonpplus(xf[ii], h, 0))
a1=Ampu[ii]; a1 = Ampu[ii]
a3=Ampp[ii]; a3 = Ampp[ii]
phi1=ThetaU[ii]; phi1 = ThetaU[ii]
phi3=ThetaP[ii]; phi3 = ThetaP[ii]
omega[ii]=2*pi*xf[ii]; omega.append(2 * np.pi * xf[ii])
cc=omega[ii]*cosh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h); cc = omega[ii] * np.cosh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
ccp=omega[ii]*cosh(xf[ii]*(zmesP+h))/sinh(xf[ii]*h); ccp = omega[ii] * np.cosh(xf[ii] * (zmesP + h)) / np.sinh(xf[ii] * h)
cs=omega[ii]*sinh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h); cs = omega[ii] * np.sinh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
# Procedure de calcul des ai et ar sans courant # Procedure de calcul des ai et ar sans courant
ccc[ii]=cc; ccc.append(cc)
ccs[ii]=cs; ccs.append(cs)
cccp[ii]=ccp; cccp.append(ccp)
# calcul des amplitudes des ondes incidentes a partir de uhoriz et p # calcul des amplitudes des ondes incidentes a partir de uhoriz et p
aincident13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*xf[ii]*xf[ii]/(omega[ii]*omega[ii]*ccp*ccp)+2*a1*a3*g*k_xb[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii])) aincident13.append(0.5 * np.sqrt(
areflechi13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*k_xb[ii]*k_xb[ii]/(omega[ii]*omega[ii]*ccp*ccp)-2*a1*a3*g*xf[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii])) a1 * a1 / (cc * cc)
+ a3
* a3
* g
* g
* xf[ii]
* xf[ii]
/ (omega[ii] * omega[ii] * ccp * ccp)
+ 2 * a1 * a3 * g * k_xb[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
))
areflechi13.append(0.5 * np.sqrt(
a1 * a1 / (cc * cc)
+ a3
* a3
* g
* g
* k_xb[ii]
* k_xb[ii]
/ (omega[ii] * omega[ii] * ccp * ccp)
- 2 * a1 * a3 * g * xf[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
))
cv = g * xf[ii] / (omega[ii] * ccp) cv = g * xf[ii] / (omega[ii] * ccp)
cp = 1 / cc cp = 1 / cc
aprog[ii]= a3/(g*xf[ii]/(omega[ii]*ccp)); #hypothese progressive Drevard et al |u|/Cv aprog.append(a3 / (g * xf[ii] / (omega[ii] * ccp)))
# hypothese progressive Drevard et al |u|/Cv
# aprog(ii)= a1/cp; # aprog(ii)= a1/cp;
# |p|/Cp # |p|/Cp
if aincident13[ii] < 0.18 * ampliseuil: if aincident13[ii] < 0.18 * ampliseuil:
r13[ii]=0 r13.append(0)
else: else:
r13[ii]=areflechi13[ii]/aincident13[ii] r13.append(areflechi13[ii] / aincident13[ii])
# calcul des energies incidente et reflechie sans ponderation avec les voisins # calcul des energies incidente et reflechie sans ponderation avec les voisins
Eprog=0.5*aprog**2/deltaf; Eprog = 0.5 * aprog**2 / deltaf
Eixb = 0.5 * aincident13**2 / deltaf Eixb = 0.5 * aincident13**2 / deltaf
Erxb = 0.5 * areflechi13**2 / deltaf Erxb = 0.5 * areflechi13**2 / deltaf
F = Fu_xb[1:iicutoff_xb] F = Fu_xb[1:iicutoff_xb]
return Eixb, Erxb, Eprog, F return Eixb, Erxb, Eprog, F
'test' "test"
# Calcul du vecteur d'onde en prÈsence d'un courant # Calcul du vecteur d'onde en prÈsence d'un courant
@ -106,13 +122,23 @@ def newtonpplus(f,h,u) :
kh = 0.5 kh = 0.5
x = 0.001 x = 0.001
u = -u u = -u
while (abs((kh - x)/x) > 0.00000001) : i = 0
while abs((kh - x) / x) > 0.00001:
i += 1
if i > 10**5:
sys.exit(1)
x = kh x = kh
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x) fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x) 2 * math.pi * f - (u / h) * x
)
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
)
kh = x - (fx / fprimx) kh = x - (fx / fprimx)
k = kh / h k = kh / h
return k return k
# fin du calcul de k
# fin du calcul de k

View file

@ -8,53 +8,67 @@ from matplotlib import animation
import cmath import cmath
from scipy.fft import fft from scipy.fft import fft
def newtonpplus(f, h, u): def newtonpplus(f, h, u):
# calcul de k: # calcul de k:
g = 9.81 g = 9.81
kh = 0.5 kh = 0.5
x = 0.001 x = 0.001
u = -u u = -u
while (abs((kh - x)/x) > 0.00000001) : while abs((kh - x) / x) > 0.00000001:
x = kh x = kh
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x) fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x) 2 * math.pi * f - (u / h) * x
)
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
)
kh = x - (fx / fprimx) kh = x - (fx / fprimx)
k = kh / h k = kh / h
return k return k
def newtonpmoins(f, h, u0): def newtonpmoins(f, h, u0):
# calcul de k: # calcul de k:
g = 9.81; g = 9.81
kh = 0.5; kh = 0.5
x = 0.01; x = 0.01
x = 6*h; x = 6 * h
while (np.abs((kh - x)/x) > 0.00000001): while np.abs((kh - x) / x) > 0.00000001:
x = kh; x = kh
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u0/h)*x)*(2*math.pi*f-(u0/h)*x); fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u0 / h) * x) * (
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u0/g)*(2*math.pi*f-(u0/h)*x); 2 * math.pi * f - (u0 / h) * x
kh = x - (fx/fprimx); )
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u0 / g) * (2 * math.pi * f - (u0 / h) * x)
)
kh = x - (fx / fprimx)
k = kh / h k = kh / h
return k return k
# Calcul du vecteur d'onde a partir de la frÈquence # Calcul du vecteur d'onde a partir de la frÈquence
# kh : vecteur d'onde * profondeur d'eau # kh : vecteur d'onde * profondeur d'eau
def newtonpropa(hi, f): def newtonpropa(hi, f):
# calcul de k: # calcul de k:
g=9.81; g = 9.81
si = (2*math.pi*f)**2/g; si = (2 * math.pi * f) ** 2 / g
kh = 0.5; kh = 0.5
x = 0.001; x = 0.001
while (np.abs((kh - x)/x) > 0.00000001) : while np.abs((kh - x) / x) > 0.00000001:
x = kh; x = kh
fx = x*math.tanh(x) - si*hi; fx = x * math.tanh(x) - si * hi
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2); fprimx = math.tanh(x) + x * (1 - (math.tanh(x)) ** 2)
kh = x - (fx/fprimx); kh = x - (fx / fprimx)
kpropa = kh/hi; kpropa = kh / hi
return kpropa return kpropa
def reflex3S(x1, x2, x3, xs1, xs2, xs3, h, mean_freq, fmin, fmax): def reflex3S(x1, x2, x3, xs1, xs2, xs3, h, mean_freq, fmin, fmax):
# Analyse avec transformee de fourier d un signal en sinus # Analyse avec transformee de fourier d un signal en sinus
# calcul du coefficient de reflexion en presence d un courant u # calcul du coefficient de reflexion en presence d un courant u
@ -98,47 +112,46 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
# xs1=0;xs2=0.80;xs3=1.30; # xs1=0;xs2=0.80;xs3=1.30;
# ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL # ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL
ampliseuil=0.005; ampliseuil = 0.005
#'check' #'check'
# pause # pause
# PAS DE TEMPS # PAS DE TEMPS
deltat1=1/mean_freq; deltat1 = 1 / mean_freq
deltat2=1/mean_freq; deltat2 = 1 / mean_freq
deltat3=1/mean_freq; deltat3 = 1 / mean_freq
# transformees de Fourier # transformees de Fourier
Y1 = fft(x1,len(x1)); Y1 = fft(x1, len(x1))
N1 = len(Y1); N1 = len(Y1)
Y2 = fft(x2,len(x2)); Y2 = fft(x2, len(x2))
N2 = len(Y2); N2 = len(Y2)
Y3 = fft(x3,len(x3)); Y3 = fft(x3, len(x3))
N3 = len(Y3); N3 = len(Y3)
# amplitudes normalisees, soit coef de fourier # amplitudes normalisees, soit coef de fourier
amplitude1=np.abs(Y1[1:N1//2])/(N1//2); amplitude1 = np.abs(Y1[1 : N1 // 2]) / (N1 // 2)
nyquist = 1/2; nyquist = 1 / 2
freq1 = (np.arange(1, (N1//2)+1, 1)-1)/(N1//2)/deltat1*nyquist; freq1 = (np.arange(1, (N1 // 2) + 1, 1) - 1) / (N1 // 2) / deltat1 * nyquist
amplitude2=np.abs(Y2[1:N2//2])/(N2//2); amplitude2 = np.abs(Y2[1 : N2 // 2]) / (N2 // 2)
nyquist = 1/2; nyquist = 1 / 2
freq2 = (np.arange(1, (N2//2)+1, 1)-1)/(N2//2)/deltat2*nyquist; freq2 = (np.arange(1, (N2 // 2) + 1, 1) - 1) / (N2 // 2) / deltat2 * nyquist
amplitude3=np.abs(Y3[1:N3//2])/(N3//2); amplitude3 = np.abs(Y3[1 : N3 // 2]) / (N3 // 2)
nyquist = 1/2; nyquist = 1 / 2
freq3 = (np.arange(1, (N3//2)+1, 1)-1)/(N3//2)/deltat3*nyquist; freq3 = (np.arange(1, (N3 // 2) + 1, 1) - 1) / (N3 // 2) / deltat3 * nyquist
# recherche de la phase # recherche de la phase
theta1=np.angle(Y1[1:N1//2]); theta1 = np.angle(Y1[1 : N1 // 2])
theta2=np.angle(Y2[1:N2//2]); theta2 = np.angle(Y2[1 : N2 // 2])
theta3=np.angle(Y3[1:N3//2]); theta3 = np.angle(Y3[1 : N3 // 2])
# pas de frequence deltaf # pas de frequence deltaf
deltaf=1/(N1//2)/deltat1*nyquist; deltaf = 1 / (N1 // 2) / deltat1 * nyquist
nbrefreq=len(freq1); nbrefreq = len(freq1)
# Caracteristiques fondamentaux,sondes canaux 1 et 3 # Caracteristiques fondamentaux,sondes canaux 1 et 3
# distances entre les sondes # distances entre les sondes
x12=xs2-xs1; x12 = xs2 - xs1
x13=xs3-xs1; x13 = xs3 - xs1
x23=xs3-xs2; x23 = xs3 - xs2
# Debut calcul des coefficients de reflexion # Debut calcul des coefficients de reflexion
indmin=np.min(np.where(freq1>0.02)); indmin = np.min(np.where(freq1 > 0.02))
indfmin=np.min(np.where(freq1>fmin)); indfmin = np.min(np.where(freq1 > fmin))
indfmax=np.max(np.where(freq1<fmax)); indfmax = np.max(np.where(freq1 < fmax))
T = [] T = []
fre = [] fre = []
@ -183,16 +196,34 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
delta13m = -kmoins * x13 delta13m = -kmoins * x13
delta23m = -kmoins * x23 delta23m = -kmoins * x23
# calcul du coefficient de reflexion a partir des sondes 1 et 2 # calcul du coefficient de reflexion a partir des sondes 1 et 2
aincident12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12+delta12p))/(2*np.abs(math.sin((delta12p+delta12m)/2)))) aincident12.append(
areflechi12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12-delta12m))/(2*np.abs(math.sin((delta12p+delta12m)/2)))) math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 + delta12p))
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
)
areflechi12.append(
math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 - delta12m))
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
)
# r12(jj)=areflechi12(jj)/aincident12(jj); # r12(jj)=areflechi12(jj)/aincident12(jj);
# calcul du coefficient de reflexion a partir des sondes 2 et 3 # calcul du coefficient de reflexion a partir des sondes 2 et 3
aincident23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23+delta23p))/(2*np.abs(math.sin((delta23p+delta23m)/2)))) aincident23.append(
areflechi23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23-delta23m))/(2*np.abs(math.sin((delta23p+delta23m)/2)))) math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 + delta23p))
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
)
areflechi23.append(
math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 - delta23m))
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
)
# r23(jj)=areflechi23(jj)/aincident23(jj); # r23(jj)=areflechi23(jj)/aincident23(jj);
# calcul du coefficient de reflexion a partir des sondes 1 et 3 # calcul du coefficient de reflexion a partir des sondes 1 et 3
aincident13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13+delta13p))/(2*np.abs(math.sin((delta13p+delta13m)/2)))) aincident13.append(
areflechi13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13-delta13m))/(2*np.abs(math.sin((delta13p+delta13m)/2)))) math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 + delta13p))
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
)
areflechi13.append(
math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 - delta13m))
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
)
# r13.append(areflechi13[jj]/aincident13[jj]) # r13.append(areflechi13[jj]/aincident13[jj])
# calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres # calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres
delta1m = 0 delta1m = 0
@ -201,12 +232,33 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
delta1p = 0 delta1p = 0
delta2p = delta12p delta2p = delta12p
delta3p = delta13p delta3p = delta13p
s1=cmath.exp(-1j*2*delta1m)+cmath.exp(-1j*2*delta2m)+cmath.exp(-1j*2*delta3m) s1 = (
s2=cmath.exp(+1j*2*delta1p)+cmath.exp(+1j*2*delta2p)+cmath.exp(+1j*2*delta3p) cmath.exp(-1j * 2 * delta1m)
s12=cmath.exp(1j*(delta1p-delta1m))+cmath.exp(1j*(delta2p-delta2m))+cmath.exp(1j*(delta3p-delta3m)) + cmath.exp(-1j * 2 * delta2m)
s3=a1*cmath.exp(-1j*(phi1+delta1m))+a2*cmath.exp(-1j*(phi2+delta2m))+a3*cmath.exp(-1j*(phi3+delta3m)) + cmath.exp(-1j * 2 * delta3m)
s4=a1*cmath.exp(-1j*(phi1-delta1p))+a2*cmath.exp(-1j*(phi2-delta2p))+a3*cmath.exp(-1j*(phi3-delta3p)) )
s2 = (
cmath.exp(+1j * 2 * delta1p)
+ cmath.exp(+1j * 2 * delta2p)
+ cmath.exp(+1j * 2 * delta3p)
)
s12 = (
cmath.exp(1j * (delta1p - delta1m))
+ cmath.exp(1j * (delta2p - delta2m))
+ cmath.exp(1j * (delta3p - delta3m))
)
s3 = (
a1 * cmath.exp(-1j * (phi1 + delta1m))
+ a2 * cmath.exp(-1j * (phi2 + delta2m))
+ a3 * cmath.exp(-1j * (phi3 + delta3m))
)
s4 = (
a1 * cmath.exp(-1j * (phi1 - delta1p))
+ a2 * cmath.exp(-1j * (phi2 - delta2p))
+ a3 * cmath.exp(-1j * (phi3 - delta3p))
)
s5 = s1 * s2 - s12 * s12 s5 = s1 * s2 - s12 * s12
ai.append(abs((s2 * s3 - s12 * s4) / s5)) ai.append(abs((s2 * s3 - s12 * s4) / s5))
ar.append(abs((s1 * s4 - s12 * s3) / s5)) ar.append(abs((s1 * s4 - s12 * s3) / s5))
# refl[jj]=ar[jj]/ai[jj]; # refl[jj]=ar[jj]/ai[jj];
@ -216,5 +268,4 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
Ereflechi123.append(0.5 * ar[count] * ar[count] / deltaf) Ereflechi123.append(0.5 * ar[count] * ar[count] / deltaf)
count += 1 count += 1
return ai, ar, Eincident123, Ereflechi123, indfmin, indfmax, fre return ai, ar, Eincident123, Ereflechi123, indfmin, indfmax, fre