1
Fork 0

Update README, bathy

This commit is contained in:
Edgar P. Burkhart 2022-07-06 09:11:50 +02:00
parent e7316717f7
commit 5c23dd1d93
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
2 changed files with 18 additions and 104 deletions

View file

@ -14,3 +14,21 @@ données.
* `-v` : verbose
* `-m` : au-lieu d'une animation, tracer le maximum de chaque grandeur dans le modèle
* `-i` : au-lieu d'une animation, tracer la valeur initiale de chaque grandeur
### Bathy
`bathy.py` permet de générer la bathymétrie utilisée par Olaflow.
```python -m processing.bathy [-c CONFIG] [-v]```
* `-c CONFIG` : choix d'un fichier de configuration
* `-v` : verbose
```
[bathy]
bathy : bathymétrie générée dans data
hstru : hauteur de poreux générée dans data
scale* : échelle de la bathymétrie en [x,y,z]
translate* : translation de la bathymétrie en [x,y,z]
out : dossier de sortie de la bathymétrie
```

View file

@ -1,104 +0,0 @@
import argparse
import gzip
import logging
import multiprocessing as mp
import pathlib
import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.gridspec import GridSpec
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-o",
"--output",
type=pathlib.Path,
help="Output directory for pickled data",
required=True,
)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Animating olaFlow output")
out = args.output
out.mkdir(parents=True, exist_ok=True)
with (
path.open("rb")
if (path := out.joinpath("pickle")).exists()
else gzip.open(path.with_suffix(".gz"), "rb")
) as f:
model = pickle.load(f)
flt = np.where((model.x >= -60) & (model.x <= -20) & (model.z >= 0) & (model.z <= 10))[
0
]
x0, idx0 = np.unique(model.x[flt].astype(np.half), return_inverse=True)
z0, idz0 = np.unique(model.z[flt].astype(np.half), return_inverse=True)
X, Z = np.meshgrid(x0, z0)
P = np.full((model.t.size, *X.shape), np.nan)
P[:, idz0, idx0] = model.fields["porosity"][:, flt]
AW = np.full((model.t.size, *X.shape), np.nan)
AW[:, idz0, idx0] = model.fields["alpha.water"][:, flt]
watl = z0[np.argmax((AW > 0.5)[:, ::-1, :], axis=1)]
U = np.full((model.t.size, 2, *X.shape), np.nan)
UU = np.full((model.t.size, *X.shape), np.nan)
U[..., idz0, idx0] = model.fields["U"][..., flt][:, (0, 2)]
UU[..., idz0, idx0] = np.linalg.norm(model.fields["U"][..., flt], axis=1)
figU = plt.figure(figsize=(19.2, 10.8), dpi=100)
gsU = GridSpec(2, 1, figure=figU, height_ratios=[1, 0.05])
axU = figU.add_subplot(gsU[0])
caxu1 = figU.add_subplot(gsU[1])
# caxu2 = figU.add_subplot(gsU[2])
alp = np.clip(np.nan_to_num(AW), 0, 1)
axU.pcolormesh(X, Z, P[1], vmin=0, vmax=1, cmap="Greys_r")
u_m = axU.quiver(
X,
Z,
*U[0],
UU[0],
alpha=alp[0],
cmap="inferno_r",
clim=(0, 20),
)
# (wat_p,) = axU.plot(x0, watl[0])
axU.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
axU.grid(c="k", alpha=0.2)
titU = axU.text(
0.5,
0.95,
f"t={model.t[0]}s",
horizontalalignment="center",
verticalalignment="top",
transform=axU.transAxes,
)
figU.colorbar(u_m, label=r"$U$", cax=caxu1, shrink=0.6, orientation="horizontal")
def animU(i):
titU.set_text(f"t={model.t[i]}s")
u_m.set_UVC(*U[i], UU[i])
u_m.set_alpha(alp[i])
# wat_p.set_ydata(watl[i])
aniU = animation.FuncAnimation(figU, animU, frames=model.t.size, interval=1 / 24)
aniU.save(out.joinpath("animUzoom.mp4"), fps=24)