Update README, bathy
This commit is contained in:
parent
e7316717f7
commit
5c23dd1d93
2 changed files with 18 additions and 104 deletions
|
@ -14,3 +14,21 @@ données.
|
|||
* `-v` : verbose
|
||||
* `-m` : au-lieu d'une animation, tracer le maximum de chaque grandeur dans le modèle
|
||||
* `-i` : au-lieu d'une animation, tracer la valeur initiale de chaque grandeur
|
||||
|
||||
### Bathy
|
||||
|
||||
`bathy.py` permet de générer la bathymétrie utilisée par Olaflow.
|
||||
|
||||
```python -m processing.bathy [-c CONFIG] [-v]```
|
||||
|
||||
* `-c CONFIG` : choix d'un fichier de configuration
|
||||
* `-v` : verbose
|
||||
|
||||
```
|
||||
[bathy]
|
||||
bathy : bathymétrie générée dans data
|
||||
hstru : hauteur de poreux générée dans data
|
||||
scale* : échelle de la bathymétrie en [x,y,z]
|
||||
translate* : translation de la bathymétrie en [x,y,z]
|
||||
out : dossier de sortie de la bathymétrie
|
||||
```
|
||||
|
|
|
@ -1,104 +0,0 @@
|
|||
import argparse
|
||||
import gzip
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import pathlib
|
||||
import pickle
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
from matplotlib.gridspec import GridSpec
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
from .olaflow import OFModel
|
||||
|
||||
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
||||
parser.add_argument("-v", "--verbose", action="count", default=0)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output",
|
||||
type=pathlib.Path,
|
||||
help="Output directory for pickled data",
|
||||
required=True,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
||||
log = logging.getLogger("ola_post")
|
||||
|
||||
log.info("Animating olaFlow output")
|
||||
out = args.output
|
||||
out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with (
|
||||
path.open("rb")
|
||||
if (path := out.joinpath("pickle")).exists()
|
||||
else gzip.open(path.with_suffix(".gz"), "rb")
|
||||
) as f:
|
||||
model = pickle.load(f)
|
||||
|
||||
flt = np.where((model.x >= -60) & (model.x <= -20) & (model.z >= 0) & (model.z <= 10))[
|
||||
0
|
||||
]
|
||||
x0, idx0 = np.unique(model.x[flt].astype(np.half), return_inverse=True)
|
||||
z0, idz0 = np.unique(model.z[flt].astype(np.half), return_inverse=True)
|
||||
|
||||
X, Z = np.meshgrid(x0, z0)
|
||||
|
||||
P = np.full((model.t.size, *X.shape), np.nan)
|
||||
P[:, idz0, idx0] = model.fields["porosity"][:, flt]
|
||||
|
||||
AW = np.full((model.t.size, *X.shape), np.nan)
|
||||
AW[:, idz0, idx0] = model.fields["alpha.water"][:, flt]
|
||||
|
||||
watl = z0[np.argmax((AW > 0.5)[:, ::-1, :], axis=1)]
|
||||
|
||||
U = np.full((model.t.size, 2, *X.shape), np.nan)
|
||||
UU = np.full((model.t.size, *X.shape), np.nan)
|
||||
U[..., idz0, idx0] = model.fields["U"][..., flt][:, (0, 2)]
|
||||
UU[..., idz0, idx0] = np.linalg.norm(model.fields["U"][..., flt], axis=1)
|
||||
|
||||
figU = plt.figure(figsize=(19.2, 10.8), dpi=100)
|
||||
gsU = GridSpec(2, 1, figure=figU, height_ratios=[1, 0.05])
|
||||
axU = figU.add_subplot(gsU[0])
|
||||
caxu1 = figU.add_subplot(gsU[1])
|
||||
# caxu2 = figU.add_subplot(gsU[2])
|
||||
|
||||
alp = np.clip(np.nan_to_num(AW), 0, 1)
|
||||
axU.pcolormesh(X, Z, P[1], vmin=0, vmax=1, cmap="Greys_r")
|
||||
u_m = axU.quiver(
|
||||
X,
|
||||
Z,
|
||||
*U[0],
|
||||
UU[0],
|
||||
alpha=alp[0],
|
||||
cmap="inferno_r",
|
||||
clim=(0, 20),
|
||||
)
|
||||
# (wat_p,) = axU.plot(x0, watl[0])
|
||||
|
||||
axU.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
|
||||
axU.grid(c="k", alpha=0.2)
|
||||
titU = axU.text(
|
||||
0.5,
|
||||
0.95,
|
||||
f"t={model.t[0]}s",
|
||||
horizontalalignment="center",
|
||||
verticalalignment="top",
|
||||
transform=axU.transAxes,
|
||||
)
|
||||
|
||||
figU.colorbar(u_m, label=r"$U$", cax=caxu1, shrink=0.6, orientation="horizontal")
|
||||
|
||||
|
||||
def animU(i):
|
||||
titU.set_text(f"t={model.t[i]}s")
|
||||
u_m.set_UVC(*U[i], UU[i])
|
||||
u_m.set_alpha(alp[i])
|
||||
# wat_p.set_ydata(watl[i])
|
||||
|
||||
|
||||
aniU = animation.FuncAnimation(figU, animU, frames=model.t.size, interval=1 / 24)
|
||||
|
||||
aniU.save(out.joinpath("animUzoom.mp4"), fps=24)
|
Loading…
Reference in a new issue