Update README, sws_ola
This commit is contained in:
parent
65c97cf8d1
commit
89a05e191f
3 changed files with 22 additions and 169 deletions
|
@ -67,3 +67,25 @@ d'enregistrer cet objet pour une utilisation efficace avec Python.
|
|||
* `-i INPUT` : dossier de sortie d'Olaflow
|
||||
* `-o OUTPUT` : dossier de sortie à utiliser
|
||||
* `-z` : activer la compression gzip (déconseillé)
|
||||
|
||||
### STL
|
||||
|
||||
`stl.py` définit une fonction permettant de convertir un tableau de bathymétrie en fichier STL. Nécessite Openscad.
|
||||
|
||||
### SWS Olaflow
|
||||
|
||||
`sws_ola.py` permet de convertir les données de sortie d'un modèle Swash en données d'entrée d'un modèle Olaflow.
|
||||
|
||||
```python -m processing.sws_ola -o OUTPUT [-c CONFIG]```
|
||||
|
||||
* `-o OUTPUT` : dossier de sortie à utiliser
|
||||
* `-c CONFIG` : choix d'un fichier de configuration
|
||||
|
||||
```
|
||||
[swash]
|
||||
np_out : dossier de sortie swash
|
||||
|
||||
[olaflow]
|
||||
t0 : instant initial du modèle Olaflow
|
||||
level : niveau d'eau dans SWASH
|
||||
```
|
||||
|
|
|
@ -1,90 +0,0 @@
|
|||
import argparse
|
||||
import configparser
|
||||
import gzip
|
||||
from itertools import starmap
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import pathlib
|
||||
import pickle
|
||||
|
||||
from cycler import cycler
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
from .olaflow import OFModel
|
||||
|
||||
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
||||
parser.add_argument("-v", "--verbose", action="count", default=0)
|
||||
parser.add_argument("-c", "--config", default="config.ini")
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
||||
log = logging.getLogger("ola_post")
|
||||
|
||||
log.info("Animating olaFlow output")
|
||||
config = configparser.ConfigParser()
|
||||
config.read(args.config)
|
||||
out = pathlib.Path(config.get("post", "out"))
|
||||
out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with (
|
||||
path.open("rb")
|
||||
if (path := out.joinpath("pickle")).exists()
|
||||
else gzip.open(path.with_suffix(".gz"), "rb")
|
||||
) as f:
|
||||
model = pickle.load(f)
|
||||
|
||||
x0_conf = config.getfloat("post", "x")
|
||||
x0_val = model.x[np.argmin(np.abs(model.x - x0_conf))]
|
||||
# z0 = config.getfloat("post", "z")
|
||||
# z0 = np.linspace(-5, 5, 16)
|
||||
c0_ = ((model.x == x0_val)[None, :] & (model.fields["alpha.water"] > 0.95)).any(axis=0)
|
||||
c0 = model.coords[c0_][:: (c0_.sum() // 8 + 1)]
|
||||
|
||||
i0 = np.argmin(
|
||||
np.linalg.norm(model.coords[..., None] - c0.T[None, ...], axis=1),
|
||||
axis=0,
|
||||
)
|
||||
|
||||
aw = model.fields["alpha.water"][:, i0]
|
||||
|
||||
U = np.where(aw > 0.95, np.linalg.norm(model.fields["U"][..., i0], axis=1), np.nan)
|
||||
P = np.where(aw > 0.95, model.fields["p"][..., i0], np.nan)
|
||||
P_rgh = np.where(aw > 0.95, model.fields["p_rgh"][..., i0], np.nan)
|
||||
|
||||
with plt.rc_context(
|
||||
{
|
||||
"axes.prop_cycle": cycler(
|
||||
color=np.linspace(0, 1, i0.size + 1)[:-1].astype("U")
|
||||
),
|
||||
"axes.grid": True,
|
||||
"axes.xmargin": 0,
|
||||
}
|
||||
):
|
||||
fig, ax = plt.subplots(3, constrained_layout=True)
|
||||
ax1, ax2, ax3 = ax
|
||||
|
||||
ha = ax1.plot(model.t, U, lw=1)
|
||||
ax1.set(xlabel="t (s)", ylabel="U (m/s)")
|
||||
|
||||
ax2.plot(model.t, P * 1e-3, lw=1)
|
||||
ax2.set(xlabel="t (s)", ylabel="P (kPa)")
|
||||
|
||||
ax3.plot(model.t, P_rgh * 1e-3, lw=1)
|
||||
ax3.set(xlabel="t (s)", ylabel="P_rgh (kPa)")
|
||||
|
||||
for a in ax:
|
||||
a.set(ylim=0)
|
||||
|
||||
ax2.legend(
|
||||
ha,
|
||||
list(
|
||||
starmap(lambda x, z: f"x={x:8}m; z={z:8}m", zip(model.x[i0], model.z[i0]))
|
||||
),
|
||||
bbox_to_anchor=(1.05, 0.5),
|
||||
loc="center left",
|
||||
)
|
||||
|
||||
fig.savefig(out.joinpath("fig.pdf"))
|
|
@ -1,79 +0,0 @@
|
|||
import argparse
|
||||
import gzip
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import pathlib
|
||||
import pickle
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
from matplotlib.gridspec import GridSpec
|
||||
from matplotlib.ticker import MultipleLocator
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
from .olaflow import OFModel
|
||||
|
||||
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
||||
parser.add_argument("-v", "--verbose", action="count", default=0)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output",
|
||||
type=pathlib.Path,
|
||||
help="Output directory for pickled data",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--max",
|
||||
help="Only compute maximum rather than animation",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--initial",
|
||||
help="Only compute initial domain",
|
||||
action="store_true",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
||||
log = logging.getLogger("ola_post")
|
||||
|
||||
log.info("Animating olaFlow output")
|
||||
out = args.output
|
||||
out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with (
|
||||
path.open("rb")
|
||||
if (path := out.joinpath("pickle")).exists()
|
||||
else gzip.open(path.with_suffix(".gz"), "rb")
|
||||
) as f:
|
||||
model = pickle.load(f)
|
||||
|
||||
x0, idx0 = np.unique(model.x.astype(np.half), return_inverse=True)
|
||||
z0, idz0 = np.unique(model.z.astype(np.half), return_inverse=True)
|
||||
|
||||
ix0 = np.argsort(x0)
|
||||
iz0 = np.argsort(z0)[::-1]
|
||||
|
||||
X, Z = np.meshgrid(x0, z0)
|
||||
|
||||
P = np.full((model.t.size, *X.shape), np.nan)
|
||||
P[:, iz0[idz0], ix0[idx0]] = model.fields["porosity"]
|
||||
|
||||
AW = np.full((model.t.size, *X.shape), np.nan)
|
||||
AW[:, iz0[idz0], ix0[idx0]] = model.fields["alpha.water"]
|
||||
|
||||
#U = np.full((model.t.size, *X.shape), np.nan)
|
||||
#U[:, iz0[idz0], ix0[idx0]] = np.linalg.norm(model.fields["U"], axis=1)
|
||||
|
||||
i0 = np.argmin(np.abs(model.t[:, None] - np.asarray((102, 118, 144.5, 176.5))[None, :]), axis=0)
|
||||
|
||||
fig, ax_ = plt.subplots(
|
||||
2, 2, figsize=(15 / 2.54, 4 / 2.54), dpi=200, constrained_layout=True
|
||||
)
|
||||
for ax, i in zip(ax_.flatten(), i0):
|
||||
ax.imshow(AW[i], cmap="Blues", vmin=0, vmax=1)
|
||||
|
||||
fig.savefig(out.joinpath("snap.pdf"))
|
Loading…
Reference in a new issue