1
Fork 0

Olaflow processing for article

This commit is contained in:
Edgar P. Burkhart 2022-07-06 07:55:46 +02:00
parent 14ef85246a
commit b2c4227f83
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
2 changed files with 216 additions and 0 deletions

View file

@ -0,0 +1,137 @@
import argparse
import gzip
from itertools import starmap
import logging
from multiprocessing import pool
import pathlib
import pickle
import sys
from cycler import cycler
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-o",
"--output",
type=pathlib.Path,
help="Output directory for pickled data",
required=True,
)
parser.add_argument(
"-f",
"--func",
type=str,
help="Post-process function to compare",
default="graphUniform",
choices=("graphUniform", "graphUniform2"),
)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Plotting comparison of model output")
def get_pickle(out):
with (
path.open("rb")
if (path := out.joinpath("pickle")).exists()
else gzip.open(path.with_suffix(".gz"), "rb")
) as f:
return pickle.load(f)
model = get_pickle(args.output)
figsize = 15 / 2.54, 6 / 2.54
fig, ax_ = plt.subplots(
2,
figsize=figsize,
dpi=200,
constrained_layout=True,
)
_ax = ax_[0]
v = np.nanmax(np.abs(np.where(
model.post_fields[args.func]["alpha.water"] > 0.5,
#np.linalg.norm(model.post_fields[args.func]["U"], axis=2),
model.post_fields[args.func]["U"][..., 0],
np.nan,
)))
v150 = np.nanmax(np.abs(np.where(
(model.post_fields[args.func]["alpha.water"] > 0.5) & (model.t[:, None] > 170) & (model.t[:, None] < 200),
#np.linalg.norm(model.post_fields[args.func]["U"], axis=2),
model.post_fields[args.func]["U"][..., 0],
np.nan,
)))
_data = model.post_fields[args.func]["U"][..., 0].T
#_c = _ax.contourf(
# model.t,
# model.post_fields[args.func]["x_U"],
# _data,
# cmap="PiYG",
# #levels=[-15, -10, -5, -2, -1, 0, 1, 2, 5, 10, 15],
# vmin=-np.nanmax(np.abs(_data)),
# vmax=np.nanmax(np.abs(_data)),
# extend="both",
#)
_c = _ax.imshow(
_data[::-1],
cmap="PiYG",
alpha=np.clip(model.post_fields[args.func]["alpha.water"], 0, 1).T[::-1],
extent=(
model.t.min(),
model.t.max(),
model.post_fields[args.func]["x_U"].min(),
model.post_fields[args.func]["x_U"].max(),
),
vmin=-v150,
vmax=v150,
aspect="auto",
)
_ax.set(xlim=(0, 400))
_ax.set(facecolor="k")
_ax.xaxis.set_minor_locator(MultipleLocator(10))
_ax.yaxis.set_minor_locator(MultipleLocator(1))
_ax.set(ylabel="z (m)")
_ax.axes.set_xticklabels([])
fig.colorbar(_c, label=f"U (m/s)", ax=_ax)
log.info(f"Vitesse max: {v}m/s")
log.info(f"Vitesse max [170,200]: {v150}m/s")
log.info(f"Écart: {abs(np.nanmax(_data)-17.7)/17.7:%}")
x = model.post_fields[args.func]["x_U"]
i0 = np.argmin(np.abs(x - 5))
_data = model.post_fields[args.func]["U"][..., i0, 0]
_alpha = model.post_fields[args.func]["alpha.water"][..., i0]
ax = ax_[1]
ax.fill_between(model.t, np.where(_alpha > 0.5, _data, 0), lw=1, color="#898989", edgecolor="k")
#ax.autoscale(True, "x", True)
ax.set(xlim=(0, 400))
ax.set(xlabel="t (s)", ylabel="U (m/s)")
ax.grid(c="k", alpha=.2)
ax.xaxis.set_minor_locator(MultipleLocator(10))
ax.yaxis.set_minor_locator(MultipleLocator(2))
fig.savefig(
args.output.joinpath(
f"U_{args.func}.pdf"
)
)
fig.savefig(
args.output.joinpath(
f"U_{args.func}.jpg"
)
)

View file

@ -0,0 +1,79 @@
import argparse
import gzip
import logging
import multiprocessing as mp
import pathlib
import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.gridspec import GridSpec
from matplotlib.ticker import MultipleLocator
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-o",
"--output",
type=pathlib.Path,
help="Output directory for pickled data",
required=True,
)
parser.add_argument(
"-m",
"--max",
help="Only compute maximum rather than animation",
action="store_true",
)
parser.add_argument(
"-i",
"--initial",
help="Only compute initial domain",
action="store_true",
)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Animating olaFlow output")
out = args.output
out.mkdir(parents=True, exist_ok=True)
with (
path.open("rb")
if (path := out.joinpath("pickle")).exists()
else gzip.open(path.with_suffix(".gz"), "rb")
) as f:
model = pickle.load(f)
x0, idx0 = np.unique(model.x.astype(np.half), return_inverse=True)
z0, idz0 = np.unique(model.z.astype(np.half), return_inverse=True)
ix0 = np.argsort(x0)
iz0 = np.argsort(z0)[::-1]
X, Z = np.meshgrid(x0, z0)
P = np.full((model.t.size, *X.shape), np.nan)
P[:, iz0[idz0], ix0[idx0]] = model.fields["porosity"]
AW = np.full((model.t.size, *X.shape), np.nan)
AW[:, iz0[idz0], ix0[idx0]] = model.fields["alpha.water"]
#U = np.full((model.t.size, *X.shape), np.nan)
#U[:, iz0[idz0], ix0[idx0]] = np.linalg.norm(model.fields["U"], axis=1)
i0 = np.argmin(np.abs(model.t[:, None] - np.asarray((102, 118, 144.5, 176.5))[None, :]), axis=0)
fig, ax_ = plt.subplots(
2, 2, figsize=(15 / 2.54, 4 / 2.54), dpi=200, constrained_layout=True
)
for ax, i in zip(ax_.flatten(), i0):
ax.imshow(AW[i], cmap="Blues", vmin=0, vmax=1)
fig.savefig(out.joinpath("snap.pdf"))