1
Fork 0

Server side scripts & all

This commit is contained in:
Edgar P. Burkhart 2022-06-24 16:50:38 +02:00
parent a000c67e93
commit b92e52ecbb
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
20 changed files with 629 additions and 58 deletions

29
data/config2.ini Normal file
View file

@ -0,0 +1,29 @@
[inp]
root=data
base=Database_20220224.xyz
hires=bathyhires.dat
hstru=Hstru.dat
poro=Poro.dat
psize=Psize.dat
raw_ts=cerema/raw/201702281700.raw
raw_spec=cerema/spt/201702281715.spt
hires_step=0.5
cycle=14400
[out]
margin=0.005
#no_breakwater=True
root=out2
sub=bathy_sub.npy
out=bathy.npy
step=1
left=-300
right=150
[artha]
lat=43.398450
lon=-1.673097
[buoy]
lat=43.408333
lon=-1.681667

View file

@ -4,6 +4,7 @@ import logging
import pathlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
parser = argparse.ArgumentParser(description="Plot orbitals")
@ -85,16 +86,18 @@ fig2dv, ax2dv = plt.subplots(figsize=(5/2.54, 2/3*10/2.54), dpi=200, constrained
x0 = ts_flt["x"] * np.cos(theta) + ts_flt["y"] * np.sin(theta)
#ax2dv.plot(x0, z0, c="#0066ff", lw=1)
ax2dv.quiver(
x0[:-1],
z0[:-1],
np.diff(x0)[:],
np.diff(z0)[:],
x0[:-1] * 1e-2,
z0[:-1] * 1e-2,
np.diff(x0)[:] * 1e-2,
np.diff(z0)[:] * 1e-2,
color="k",
scale_units="xy",
scale=1,
)
ax2dv.grid(c="k", alpha=.2)
ax2dv.set(aspect="equal", xlabel="x (cm)", ylabel="z (cm)")
ax2dv.set(aspect="equal", xlabel="x (m)", ylabel="z (m)")
ax2dv.set(ylim=(-10, 10))
ax2dv.yaxis.set_minor_locator(MultipleLocator(1))
fig2dv.savefig("out_orbitals.pdf")
fig2dv.savefig("out_orbitals.jpg")

View file

@ -131,8 +131,12 @@ np.savetxt(out_root.joinpath("hstru.dat"), hstru[::-1], newline=" ")
np.savetxt(out_root.joinpath("poro.dat"), poro[::-1], newline=" ")
np.savetxt(out_root.joinpath("psize.dat"), psize[::-1], newline=" ")
fig, ax = plt.subplots()
fig, ax = plt.subplots(figsize=(16 / 2.54, 2 / 3 * 10 / 2.54), constrained_layout=True)
ax.plot(-x, z, color="k")
ax.fill_between(-x, z + hstru, z, color="k", alpha=0.2)
ax.set_title(f"N={z.size-1}, x=[{-x.max()};{-x.min()}]")
#ax.set_title(f"N={z.size-1}, x=[{-x.max()};{-x.min()}]")
ax.set(ylim=(-30, 15))
ax.set(xlabel="x (m)", ylabel="z (m)")
ax.autoscale(True, "x", True)
ax.grid()
fig.savefig(out_root.joinpath("bathy.pdf"))

View file

@ -45,7 +45,7 @@ if cycle is None:
f = inp["f"]
S = inp["S"] * Sm
else:
f = np.arange(inp["f"].min(), inp["f"].max() + 1/cycle, 1/cycle)
f = np.arange(inp["f"].min(), inp["f"].max() + 1 / cycle, 1 / cycle)
S = griddata(inp["f"], inp["S"] * Sm, f)
with out_spec.open("w") as out:

View file

@ -4,6 +4,7 @@ import logging
import pathlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
parser = argparse.ArgumentParser(description="Pre-process time-series")
@ -25,12 +26,14 @@ out_ts = out_root.joinpath("ts.dat")
raw_ts = []
for tsi in config.get("inp", "raw_ts").split(","):
raw_ts.append(np.loadtxt(
raw_ts.append(
np.loadtxt(
inp_root.joinpath(tsi),
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
delimiter=",",
max_rows=2304,
))
)
)
n = len(raw_ts)
raw_ts = np.concatenate(raw_ts)
log.debug(f"{raw_ts=}")
@ -39,13 +42,43 @@ if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
t = np.linspace(0, 30 * 60 * n, 2304*n+1)[:-1]
t = np.linspace(0, 30 * 60 * n, 2304 * n + 1)[:-1]
log.debug(f"{t=}")
log.info(f"Saving timeseries to '{out_ts}'")
np.savetxt(out_ts, np.stack((t, raw_ts["z"]/100), axis=1))
np.savetxt(out_ts, np.stack((t, raw_ts["z"] / 100), axis=1))
fig, ax = plt.subplots()
ax.plot(t, raw_ts["z"])
ax.set(xlabel="t (s)", ylabel="z (cm)")
fig, ax = plt.subplots(figsize=(8 / 2.54, 2 / 3 * 10 / 2.54), constrained_layout=True)
tp = np.datetime64("2017-02-28T17:00:00") + t.astype(np.timedelta64)[-(t.size // 3) :]
ax.plot(
tp,
raw_ts["z"][-(t.size // 3) :] * 1e-2,
color="k",
lw=1,
)
ax.axvline(
np.datetime64("2017-02-28T17:00:00") + np.timedelta64(23 * 60 + 8),
color="k",
alpha=0.1,
lw=20,
)
ax.autoscale(True, "x", True)
ax.set(xlabel="t (s)", ylabel="z (m)")
yabs_max = abs(max(ax.get_ylim(), key=abs))
ax.set(ylim=(-10, 10))
ax.set(
xticks=(
np.datetime64("2017-02-28T17:20:00"),
np.datetime64("2017-02-28T17:25:00"),
np.datetime64("2017-02-28T17:30:00"),
),
xticklabels=(
"17:20",
"17:25",
"17:30",
),
)
ax.yaxis.set_minor_locator(MultipleLocator(1))
ax.grid(color="k", alpha=0.2)
fig.savefig(out_root.joinpath("ts.pdf"))
fig.savefig(out_root.joinpath("ts.jpg"), dpi=200)

View file

@ -0,0 +1,29 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.1.0 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object porosityDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Materials: clear region, core, secondary armour layer, primary armour layer
// a,b,c: tuning parameters
a 2(0 50);
b 2(0 1.2);
c 2(0 0.34);
// D50: mean nominal diameter
D50 2(1 4);
// porosity (phi)
porosity 2(1 0.4);
// ************************************************************************* //

View file

@ -0,0 +1,29 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.1.0 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object turbulenceProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
simulationType RAS;
RAS
{
RASModel kOmegaSST;
turbulence on;
printCoeffs on;
}
// ************************************************************************* //

View file

@ -0,0 +1,81 @@
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.7.1 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
scale 1;
vertices
(
(-150 0 -30)
(0 0 -30)
(0 0 30)
(-150 0 30)
(-150 1 -30)
(0 1 -30)
(0 1 30)
(-150 1 30)
);
blocks
(
hex (0 1 5 4 3 2 6 7) (750 1 300) simpleGrading (1 1 1)
);
edges
(
);
boundary
(
inlet
{
type patch;
faces
(
(0 4 7 3)
);
}
/*outlet
{
type patch;
faces
(
(1 5 6 2)
);
}*/
wall1
{
type wall;
faces
(
(0 1 5 4)
);
}
atmosphere
{
type patch;
faces
(
(3 2 6 7)
(1 5 6 2)
);
}
);
mergePatchPairs
(
);
// ************************************************************************* //

View file

@ -0,0 +1,138 @@
/*---------------------------------------------------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.3 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
location "system";
class dictionary;
object controlDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
application olaFlow;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 400;
deltaT 0.1;
writeControl adjustableRunTime;
writeInterval 0.5;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
compression on;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
adjustTimeStep yes;
maxCo 0.45;
maxAlphaCo 0.45;
maxDeltaT 0.5;
/*
functions
{
gaugesVOF
{
type sets;
libs ("libsampling.so");
writeControl outputTime;
writeInterval 1;
setFormat raw;
surfaceFormat raw;
interpolationScheme cell;
fields ( alpha.water );
sets
(
GaugeVOF01
{
type lineCellFace;
axis xyz;
start ( 0.5 0.001 0 );
end ( 0.5 0.001 1.2 );
}
GaugeVOF02
{
type lineCellFace;
axis xyz;
start ( 9.25 0.001 0 );
end ( 9.25 0.001 1.2 );
}
GaugeVOF03
{
type lineCellFace;
axis xyz;
start ( 15.75 0.001 0 );
end ( 15.75 0.001 1.2 );
}
GaugeVOF04
{
type lineCellFace;
axis xyz;
start ( 17.75 0.001 0 );
end ( 17.75 0.001 1.2 );
}
GaugeVOF05
{
type lineCellFace;
axis xyz;
start ( 21.1 0.001 0 );
end ( 21.1 0.001 1.2 );
}
);
}
gaugesP
{
type sets;
libs ("libsampling.so");
writeControl outputTime;
writeInterval 1;
setFormat raw;
surfaceFormat raw;
interpolationScheme cellPointFace;
fields ( p );
sets
(
GaugesP
{
type boundaryPoints;
axis xyz;
patches 1(caisson);
points ((18.0 0.01 0.75)
(18.00 0.01 0.80)
(18.00 0.01 0.85)
(18.00 0.01 0.95)
(18.01 0.01 0.70)
(18.25 0.01 0.70)
(18.50 0.01 0.70)
(18.75 0.01 0.70));
maxDistance 0.01;
}
);
}
}
*/
// ************************************************************************* //

View file

@ -0,0 +1,25 @@
/*--------------------------------*- C++ -*----------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Version: 9
\\/ M anipulation |
-------------------------------------------------------------------------------
Description
Writes graph data for specified fields along a line, specified by start and
end points. A specified number of graph points are used, distributed
uniformly along the line.
\*---------------------------------------------------------------------------*/
start (-50 0.5 -15);
end (-50 0.5 15);
nPoints 100;
fields (alpha.water U);
axis z;
#includeEtc "caseDicts/postProcessing/graphs/graphUniform.cfg"
// ************************************************************************* //

View file

@ -0,0 +1,25 @@
/*--------------------------------*- C++ -*----------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Version: 9
\\/ M anipulation |
-------------------------------------------------------------------------------
Description
Writes graph data for specified fields along a line, specified by start and
end points. A specified number of graph points are used, distributed
uniformly along the line.
\*---------------------------------------------------------------------------*/
start (-20 0.5 -15);
end (-20 0.5 15);
nPoints 100;
fields (alpha.water U);
axis z;
#includeEtc "caseDicts/postProcessing/graphs/graphUniform.cfg"
// ************************************************************************* //

View file

@ -8,6 +8,7 @@ import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.gridspec import GridSpec
from matplotlib.ticker import MultipleLocator
import numpy as np
from scipy import interpolate
@ -28,6 +29,12 @@ parser.add_argument(
help="Only compute maximum rather than animation",
action="store_true",
)
parser.add_argument(
"-i",
"--initial",
help="Only compute initial domain",
action="store_true",
)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
@ -61,11 +68,19 @@ AW[:, iz0[idz0], ix0[idx0]] = model.fields["alpha.water"]
U = np.full((model.t.size, *X.shape), np.nan)
U[:, iz0[idz0], ix0[idx0]] = np.linalg.norm(model.fields["U"], axis=1)
fig = plt.figure()
gs = GridSpec(3, 1, figure=fig, height_ratios=[1, 0.05, 0.05])
fig = plt.figure(
figsize=(15 / 2.54, 4 / 2.54), dpi=200, constrained_layout=True
)
gs = GridSpec(
3 if not args.initial else 1,
1,
figure=fig,
height_ratios=[1, 0.1, 0.1] if not args.initial else [1],
)
ax = fig.add_subplot(gs[0])
cax1 = fig.add_subplot(gs[1])
cax2 = fig.add_subplot(gs[2])
if not args.initial:
cax1 = fig.add_subplot(gs[1])
cax2 = fig.add_subplot(gs[2])
aw_m = ax.imshow(
AW[0],
vmin=0,
@ -86,10 +101,15 @@ p_m = ax.imshow(
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
fig.colorbar(aw_m, label=r"$\alpha_w$", cax=cax1, shrink=0.6, orientation="horizontal")
fig.colorbar(p_m, label=r"Porosity", cax=cax2, shrink=0.6, orientation="horizontal")
if not args.initial:
fig.colorbar(
aw_m, label=r"$\alpha_w$", cax=cax1, shrink=0.6, orientation="horizontal"
)
fig.colorbar(p_m, label=r"Porosity", cax=cax2, shrink=0.6, orientation="horizontal")
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#000000")
ax.grid(c="k", alpha=0.2)
ax.xaxis.set_minor_locator(MultipleLocator(5))
ax.yaxis.set_minor_locator(MultipleLocator(5))
figU = plt.figure()
@ -137,6 +157,13 @@ if args.max:
fig.savefig(out.joinpath("max_aw.pdf"))
figU.savefig(out.joinpath("max_U.pdf"))
elif args.initial:
aw_m.set_array(AW[0])
ax.vlines(-20, -15, 15, color="k", lw=1, ls="--", label="Measurements")
ax.text(-20, 15, "Measurements", ha="right", va="bottom")
fig.savefig(out.joinpath("aw_t0.pdf"))
fig.savefig(out.joinpath("aw_t0.jpg"), dpi=200)
else:
fig.set(figwidth=19.2, figheight=10.8, dpi=100)
figU.set(figwidth=19.2, figheight=10.8, dpi=100)

View file

@ -74,7 +74,7 @@ u_m = axU.quiver(
UU[0],
alpha=alp[0],
cmap="inferno_r",
clim=(0, np.nanmax(UU)),
clim=(0, 20),
)
# (wat_p,) = axU.plot(x0, watl[0])

View file

@ -9,7 +9,7 @@ import sys
from cycler import cycler
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.ticker import MultipleLocator
import numpy as np
from scipy import interpolate
@ -67,11 +67,12 @@ def get_pickle(out):
models = list(map(get_pickle, args.output))
figsize = 15 / 2.54, 4 / 2.54 * len(models)
fig, ax_ = plt.subplots(
len(models),
figsize=(6, 1.5 * len(models)),
dpi=100,
figsize=figsize,
dpi=200,
constrained_layout=True,
squeeze=False,
)
@ -90,32 +91,71 @@ if args.timestep is None:
)
case "U":
for i, (_ax, _model) in enumerate(zip(ax, models)):
v = np.nanmax(np.abs(np.where(
_model.post_fields[args.func]["alpha.water"] > 0.5,
#np.linalg.norm(_model.post_fields[args.func][args.field], axis=2),
_model.post_fields[args.func][args.field][..., 0],
np.nan,
)))
v150 = np.nanmax(np.abs(np.where(
(_model.post_fields[args.func]["alpha.water"] > 0.5) & (_model.t[:, None] > 170) & (_model.t[:, None] < 200),
#np.linalg.norm(_model.post_fields[args.func][args.field], axis=2),
_model.post_fields[args.func][args.field][..., 0],
np.nan,
)))
_data = _model.post_fields[args.func][args.field][..., 0].T
#_c = _ax.contourf(
# _model.t,
# _model.post_fields[args.func][f"x_{args.field}"],
# _data,
# cmap="PiYG",
# #levels=[-15, -10, -5, -2, -1, 0, 1, 2, 5, 10, 15],
# vmin=-np.nanmax(np.abs(_data)),
# vmax=np.nanmax(np.abs(_data)),
# extend="both",
#)
_c = _ax.imshow(
np.where(_model.post_fields[args.func]["alpha.water"] > 0.5, np.linalg.norm(_model.post_fields[args.func][args.field], axis=2), np.nan).T[::-1],
vmin=0,
vmax=20,
cmap="inferno_r",
_data[::-1],
cmap="PiYG",
alpha=np.clip(_model.post_fields[args.func]["alpha.water"], 0, 1).T[::-1],
extent=(
_model.t.min(),
_model.t.max(),
_model.post_fields[args.func][f"x_{args.field}"].min(),
_model.post_fields[args.func][f"x_{args.field}"].max(),
),
vmin=-v150,
vmax=v150,
aspect="auto",
)
_ax.set(xlim=(100, 300))
_ax.set(facecolor="k")
_ax.xaxis.set_minor_locator(MultipleLocator(5))
_ax.yaxis.set_minor_locator(MultipleLocator(1))
fig.colorbar(_c, label=f"{args.field} (m/s)", ax=_ax)
log.info(f"Vitesse max: {v}m/s")
log.info(f"Vitesse max [170,200]: {v150}m/s")
log.info(f"Écart: {abs(np.nanmax(_data)-17.7)/17.7:%}")
case _:
log.error(f"Cannot plot field {args.field} from {args.func}")
sys.exit(1)
for i, (_ax, _model) in enumerate(zip(ax, models)):
_ax.set(xlabel="t (s)", ylabel="z (m)", title=f"Case {i}")
_ax.grid(color="k", alpha=0.2)
_ax.set(xlabel="t (s)", ylabel="z (m)")
if len(models) > 1:
_ax.set(title=f"Case {i}")
#_ax.grid(color="#797979", alpha=0.5)
fig.savefig(
args.output[0].joinpath(
f"diff_{args.func}_{args.field}_{'_'.join([o.name for o in args.output])}.pdf"
)
)
fig.savefig(
args.output[0].joinpath(
f"diff_{args.func}_{args.field}_{'_'.join([o.name for o in args.output])}.jpg"
)
)
else:
match args.field:
case "alpha.water":
@ -123,7 +163,9 @@ else:
_ax.tricontour(
_model.x,
_model.z,
_model.fields[args.field][np.where(_model.t == args.timestep)[0]][0],
_model.fields[args.field][np.where(_model.t == args.timestep)[0]][
0
],
levels=(0.5,),
colors="k",
)

View file

@ -10,5 +10,5 @@ mpi=8
[post]
inp=inp_post/ts_4lay_1h
out=out_post/ts_4lay_1h
x0=-1250
x0=-50
t0=180

View file

@ -9,7 +9,7 @@ mpi=8
[post]
inp=inp_post/real_spec_interp
#compare=inp_post/real_spec_interp_nb
compare=inp_post/real_spec_interp_nb
out=out_post/real_spec_interp
x0=-1250
t0=180

View file

@ -7,8 +7,6 @@ import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as sgl
from .read_swash import *
parser = argparse.ArgumentParser(description="Post-process swash output")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
@ -30,7 +28,8 @@ t = np.load(inp.joinpath("t.npy"))
botl = np.load(inp.joinpath("botl.npy"))
watl = np.load(inp.joinpath("watl.npy"))
vel = np.load(inp.joinpath("vel_x.npy"))
#vel = np.load(inp.joinpath("vel_x.npy"))
vel = np.load(inp.joinpath("vel.npy"))[0]
# Cospectral calculations
x0 = config.getint("post", "x0")
@ -65,22 +64,25 @@ R = np.sqrt(
if config.has_option("post", "compare"):
inp_comp = pathlib.Path(config.get("post", "compare"))
x_ = np.load(inp_comp.joinpath("xp.npy"))
t_ = np.load(inp_comp.joinpath("tsec.npy"))
x_ = np.load(inp_comp.joinpath("x.npy"))
t_ = np.load(inp_comp.joinpath("t.npy"))
botl_ = np.load(inp_comp.joinpath("botl.npy"))
watl_ = np.load(inp_comp.joinpath("watl.npy"))
vel_ = np.load(inp_comp.joinpath("vel_x.npy"))
# Cospectral calculations
arg_x0_ = np.abs(x_ - x0).argmin()
arg_t0_ = np.abs(t_ - t0).argmin()
dt_ = np.diff(t_).mean() * 1e-3
f_ = 1 / dt_
eta_ = watl_[t_ > t0, arg_x0_]
u_ = vel_[t_ > t0, arg_x0_]
phi_eta_ = sgl.welch(eta_, f, nperseg=nperseg)
phi_u_ = sgl.welch(u_, f, nperseg=nperseg)
phi_eta_u_ = sgl.csd(eta_, u_, f, nperseg=nperseg)
phi_eta_ = sgl.welch(eta_, f_, nperseg=nperseg)
phi_u_ = sgl.welch(u_, f_, nperseg=nperseg)
phi_eta_u_ = sgl.csd(eta_, u_, f_, nperseg=nperseg)
H_ = np.sqrt(np.abs(phi_eta_[1]))
U_ = np.sqrt(np.abs(phi_u_[1]))
@ -91,10 +93,6 @@ if config.has_option("post", "compare"):
(np.abs(phi_eta_[1]) + np.abs(phi_u_[1]) - 2 * phi_eta_u_[1].real)
/ (np.abs(phi_eta_[1]) + np.abs(phi_u_[1]) + 2 * phi_eta_u_[1].real)
)
# R_ = np.sqrt(
# (1 + G_**2 - 2 * G_ * np.cos(th_eta_u_))
# / (1 + G_**2 + 2 * G_ * np.cos(th_eta_u_))
# )
# Plotting

View file

@ -30,7 +30,7 @@ botl = np.load(inp.joinpath("botl.npy"))
watl = np.load(inp.joinpath("watl.npy"))
vel = np.load(inp.joinpath("vel.npy"))[0]
t0 = np.linspace(23 * 60 + 8, 23 * 60 + 8 + 100, 5)
t0 = np.linspace(23 * 60 + 8, 23 * 60 + 8 + 100, 6)
# Plotting
log.info("Plotting results")
@ -38,10 +38,10 @@ log.info("Plotting results")
vlim = np.nanmin(np.maximum(watl, -botl)), np.nanmax(np.maximum(watl, -botl))
fig_x, ax = plt.subplots(
len(t0), figsize=(10 / 2.54, 4 / 3 * 10 / 2.54), constrained_layout=True
3, 2, figsize=(15 / 2.54, 2 / 3 * 10 / 2.54), constrained_layout=True
)
i0 = np.argmin(np.abs(t * 1e-3 - t0[0]))
for ax_x, t0_x in zip(ax, t0):
for ax_x, t0_x in zip(ax.reshape(-1), t0):
ax_x.plot(x, -botl, color="k")
i = np.argmin(np.abs(t * 1e-3 - t0_x))
ax_x.plot(
@ -67,5 +67,6 @@ log.info(f"Saving plots in '{out}'")
out.mkdir(parents=True, exist_ok=True)
fig_x.savefig(out.joinpath("x.pdf"))
fig_x.savefig(out.joinpath("x.jpg"), dpi=200)
log.info("Finished post-processing")

View file

@ -0,0 +1,87 @@
import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as sgl
parser = argparse.ArgumentParser(description="Post-process swash output")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("post")
log.info("Starting post-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp = pathlib.Path(config.get("post", "inp"))
root = pathlib.Path(config.get("swash", "out"))
log.info(f"Reading data from '{inp}'")
x = np.load(inp.joinpath("x.npy"))
t = np.load(inp.joinpath("t.npy")) * 1e-3
botl = np.load(inp.joinpath("botl.npy"))
watl = np.load(inp.joinpath("watl.npy"))
vel = np.load(inp.joinpath("vel.npy"))[0]
# Plotting
log.info("Plotting results")
vlim = np.nanmin(np.maximum(watl, -botl)), np.nanmax(np.maximum(watl, -botl))
x0 = np.linspace(-600, -200, 5)
i0 = np.argmin(np.abs(x[:, None] - x0), axis=0)
fig_x, ax = plt.subplots(
5, 1, figsize=(15 / 2.54, 15/ 2.54), constrained_layout=True
)
dt = np.mean(np.diff(t))
N = t.size
s0 = 2 * dt
dj = 0.5
J = 1 / dj * np.log2(N * dt / s0)
j = np.arange(0, J)
sj = s0 * 2 ** (j * dj)
Mw = sj / dt
sig = np.var(watl[:, i0])
M = np.stack([(np.abs(sgl.cwt(watl[:, i], sgl.morlet2, Mw))/sig)**2 for i in i0])
v = np.max(M)
for ax_x, M_, x_ in zip(ax.reshape(-1), M, x[i0]):
c = ax_x.contourf(t, sj, M_, cmap="Greys", vmin=0, levels=[1, 2.5, 5, 10, 20, 40], extend="both")
fig_x.colorbar(c, ax=ax_x, label="NWPS")
ax_x.grid(color="k", alpha=0.2)
ax_x.text(
0.95,
0.95,
f"x={x_:.0f}m",
horizontalalignment="right",
verticalalignment="top",
transform=ax_x.transAxes,
#c="w",
)
ax_x.semilogy()
ax_x.autoscale(True, "both", True)
ax_x.set_rasterization_zorder(1.5)
ax_x.set(ylabel="T (s)", ylim=(sj[0], sj[-1]))
if ax_x != ax.reshape(-1)[-1]:
ax_x.axes.set_xticklabels([])
else:
ax_x.set(xlabel="t (s)")
out = pathlib.Path(config.get("post", "out")).joinpath(f"trans")
log.info(f"Saving plots in '{out}'")
out.mkdir(parents=True, exist_ok=True)
fig_x.savefig(out.joinpath("wavelet.pdf"), dpi=300)
fig_x.savefig(out.joinpath("wavelet.jpg"), dpi=200)
fig_x.savefig(out.joinpath("wavelet.png"), dpi=200)
log.info("Finished post-processing")

View file

@ -38,6 +38,9 @@ w0_comp = watl_comp[:, arg_x0]
cr0 = np.where(np.diff(np.sign(w0)))[0]
cr0_comp = np.where(np.diff(np.sign(w0_comp)))[0]
log.info(f"1: {cr0.size} waves")
log.info(f"2: {cr0_comp.size} waves")
wave = np.fromiter(
(
np.abs(
@ -72,9 +75,22 @@ ax.autoscale(True, "x", True)
ax.grid()
fig.savefig(out.joinpath("wsize.pdf"))
fig2, ax2 = plt.subplots(figsize=(10/2.54, 2/3*10/2.54), constrained_layout=True)
ax2.plot(t[cr0[i0 - 5] : cr0[i0 + 7]] * 1e-3, w0[cr0[i0 - 5] : cr0[i0 + 7]], color="k", label="Case 1")
ax2.plot(t[cr0[i0 - 5] : cr0[i0 + 7]] * 1e-3, w0_comp[cr0[i0 - 5] : cr0[i0 + 7]], color="k", ls="-.", label="Case 2")
fig2, ax2 = plt.subplots(
figsize=(10 / 2.54, 2 / 3 * 10 / 2.54), constrained_layout=True
)
ax2.plot(
t[cr0[i0 - 5] : cr0[i0 + 7]] * 1e-3,
w0[cr0[i0 - 5] : cr0[i0 + 7]],
color="k",
label="Cas 1",
)
ax2.plot(
t[cr0[i0 - 5] : cr0[i0 + 7]] * 1e-3,
w0_comp[cr0[i0 - 5] : cr0[i0 + 7]],
color="k",
ls="-.",
label="Cas 2",
)
ax2.set(xlabel="t (s)", ylabel="z (m)")
ax2.autoscale(True, "x", True)
ax2.grid()
@ -82,7 +98,11 @@ ax2.legend()
fig2.savefig(out.joinpath("maxw.pdf"))
fig2.savefig(out.joinpath("maxw.jpg"), dpi=200)
log.info(f"RMS difference: {np.sqrt(np.mean((w0_comp-w0)**2))}m ; {np.sqrt(np.mean((w0_comp-w0)**2))/(w0.max()-w0.min()):%}")
log.info(
f"RMS difference: {np.sqrt(np.mean((w0_comp-w0)**2))}m ; {np.sqrt(np.mean((w0_comp-w0)**2))/(w0.max()-w0.min()):%}"
)
log.info(f"Bias: {np.mean(w0_comp-w0)}m")
log.info(f"Maximum wave size: {wave.max()}m ; {wave_comp.max()}m")
log.info(f"Maximum wave size difference: {abs(wave_comp.max()-wave.max())/wave.max():%}")
log.info(
f"Maximum wave size difference: {abs(wave_comp.max()-wave.max())/wave.max():%}"
)