1
Fork 0

Outputs for article

This commit is contained in:
Edgar P. Burkhart 2022-07-06 07:53:59 +02:00
parent b8da550849
commit c443947e3c
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
3 changed files with 86 additions and 8 deletions

76
data/processing/plot.py Normal file
View file

@ -0,0 +1,76 @@
import argparse
import configparser
import logging
import pathlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
from .lambert import Lambert
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"))
out_root = pathlib.Path(config.get("out", "root"))
bathy_inp = out_root.joinpath(config.get("out", "sub"))
hires_inp = inp_root.joinpath(config.get("inp", "hires"))
hstru_inp = inp_root.joinpath(config.get("inp", "hstru"))
poro_inp = inp_root.joinpath(config.get("inp", "poro"))
psize_inp = inp_root.joinpath(config.get("inp", "psize"))
bathy_out = inp_root.joinpath(config.get("out", "out"))
log.info(f"Loading bathymetry from {bathy_inp}")
bathy_curvi = np.load(bathy_inp)
projection = Lambert()
bathy = np.stack(
(
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
bathy_curvi[:, 2],
),
axis=1,
)
log.debug(f"Cartesian bathy: {bathy}")
artha_curvi = np.array(
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
)
buoy_curvi = np.array((config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat")))
artha = np.asarray(projection.cartesian(*artha_curvi))
buoy = np.asarray(projection.cartesian(*buoy_curvi))
bathy[:, :2] = bathy[:, :2] - artha
fig, ax = plt.subplots(figsize=(6 / 2.54, 5 / 2.54), constrained_layout=True, dpi=200)
c = ax.tricontourf(
bathy[:, 0],
bathy[:, 1],
bathy[:, 2],
cmap="plasma",
levels=np.arange(-30, 10, 5),
extend="both",
)
ax.plot(*(np.stack((artha, buoy)) - artha).T, lw=1, ls="-.", c="k", marker="x")
ax.set(xlim=(bathy[np.argmax(bathy[:, 1]), 0], bathy[np.argmin(bathy[:, 1]), 0]))
ax.set(ylim=(bathy[np.argmin(bathy[:, 0]), 1], bathy[np.argmax(bathy[:, 0]), 1]))
ax.set(xlabel="x (m)", ylabel="y (m)")
fig.colorbar(c, label="z (m)")
ax.set_aspect("equal")
ax.set_rasterization_zorder(1.5)
fig.savefig("bathy2d.pdf")
plt.show()

View file

@ -135,7 +135,7 @@ fig, ax = plt.subplots(figsize=(16 / 2.54, 2 / 3 * 10 / 2.54), constrained_layou
ax.plot(-x, z, color="k") ax.plot(-x, z, color="k")
ax.fill_between(-x, z + hstru, z, color="k", alpha=0.2) ax.fill_between(-x, z + hstru, z, color="k", alpha=0.2)
#ax.set_title(f"N={z.size-1}, x=[{-x.max()};{-x.min()}]") #ax.set_title(f"N={z.size-1}, x=[{-x.max()};{-x.min()}]")
ax.set(ylim=(-30, 15)) ax.set(ylim=(-40, 15))
ax.set(xlabel="x (m)", ylabel="z (m)") ax.set(xlabel="x (m)", ylabel="z (m)")
ax.autoscale(True, "x", True) ax.autoscale(True, "x", True)
ax.grid() ax.grid()

View file

@ -121,10 +121,10 @@ if bigw.size > 32:
log.warning(f"Number of large waves: {bigw.size}") log.warning(f"Number of large waves: {bigw.size}")
sys.exit() sys.exit()
for w in bigw: fig, ax_ = plt.subplots(2 * (bigw.size // 2), 2, figsize=(15/2.54, 4/3*10/2.54), constrained_layout=True)
fig, (ax2, ax) = plt.subplots(2, figsize=(15/2.54, 2/3*10/2.54), constrained_layout=True) for w, ax2, ax in zip(bigw, ax_[::2].flatten(), ax_[1::2].flatten()):
i0 = cr0[w] - int(1200 / dt) i0 = cr0[w] - int(400 / dt)
i1 = cr0[w + 2] + int(1200 / dt) i1 = cr0[w + 2] + int(400 / dt)
# a = [t0[i0], t0[i1], *Mlims] # a = [t0[i0], t0[i1], *Mlims]
# c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v) # c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v)
ws = np.ptp(raw_ts["z"][cr0[w]:cr0[w+2]]) * 1e-2 ws = np.ptp(raw_ts["z"][cr0[w]:cr0[w+2]]) * 1e-2
@ -143,13 +143,15 @@ for w in bigw:
#ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.") #ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.")
# ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)]) # ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym)) ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym))
ax2.set(ylim=(2, 200))
ax2.set(ylabel="T (s)") ax2.set(ylabel="T (s)")
ax2.grid(c="k", alpha=0.2) ax2.grid(c="k", alpha=0.2)
ax2.semilogy() ax2.semilogy()
ax.grid(c="k", alpha=.2) ax.grid(c="k", alpha=.2)
#ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.") #ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.")
#ax.set(zorder=1, frame_on=False) #ax.set(zorder=1, frame_on=False)
ax.set(xlabel="t (s)", ylabel="z (m)") ax.set_xlabel("t (s)", loc="left")
ax.set_ylabel("z (m)")
ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1) ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1)
locator = mdates.AutoDateLocator(minticks=3, maxticks=7) locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
@ -162,8 +164,8 @@ for w in bigw:
ax2.set_rasterization_zorder(1.5) ax2.set_rasterization_zorder(1.5)
fig.savefig(out_root.joinpath(f"wavelet{w}.pdf"), dpi=300) fig.savefig(out_root.joinpath(f"wavelet.pdf"), dpi=300)
fig.savefig(out_root.joinpath(f"wavelet{w}.png"), dpi=200) fig.savefig(out_root.joinpath(f"wavelet.png"), dpi=200)
#fig, ax = plt.subplots(constrained_layout=True) #fig, ax = plt.subplots(constrained_layout=True)
## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1) ## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1)