1
Fork 0
internship/data/processing/plot.py

71 lines
2 KiB
Python

import argparse
import configparser
import logging
import pathlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
from .lambert import Lambert
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"))
out_root = pathlib.Path(config.get("out", "root"))
bathy_inp = out_root.joinpath(config.get("out", "sub"))
log.info(f"Loading bathymetry from {bathy_inp}")
bathy_curvi = np.load(bathy_inp)
projection = Lambert()
bathy = np.stack(
(
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
bathy_curvi[:, 2],
),
axis=1,
)
log.debug(f"Cartesian bathy: {bathy}")
artha_curvi = np.array(
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
)
buoy_curvi = np.array((config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat")))
artha = np.asarray(projection.cartesian(*artha_curvi))
buoy = np.asarray(projection.cartesian(*buoy_curvi))
bathy[:, :2] = bathy[:, :2] - artha
fig, ax = plt.subplots(figsize=(6 / 2.54, 5 / 2.54), constrained_layout=True, dpi=200)
c = ax.tricontourf(
bathy[:, 0],
bathy[:, 1],
bathy[:, 2],
cmap="plasma",
levels=np.arange(-30, 10, 5),
extend="both",
)
ax.plot(*(np.stack((artha, buoy)) - artha).T, lw=1, ls="-.", c="k", marker="x")
ax.set(xlim=(bathy[np.argmax(bathy[:, 1]), 0], bathy[np.argmin(bathy[:, 1]), 0]))
ax.set(ylim=(bathy[np.argmin(bathy[:, 0]), 1], bathy[np.argmax(bathy[:, 0]), 1]))
ax.set(xlabel="x (m)", ylabel="y (m)")
fig.colorbar(c, label="z (m)")
ax.set_aspect("equal")
ax.set_rasterization_zorder(1.5)
fig.savefig(out_root.joinpath("bathy2d.pdf"))
plt.show()