90 lines
2.4 KiB
Python
90 lines
2.4 KiB
Python
import argparse
|
|
import configparser
|
|
import gzip
|
|
from itertools import starmap
|
|
import logging
|
|
import multiprocessing as mp
|
|
import pathlib
|
|
import pickle
|
|
|
|
from cycler import cycler
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
|
|
from .olaflow import OFModel
|
|
|
|
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
|
parser.add_argument("-c", "--config", default="config.ini")
|
|
args = parser.parse_args()
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
log = logging.getLogger("ola_post")
|
|
|
|
log.info("Animating olaFlow output")
|
|
config = configparser.ConfigParser()
|
|
config.read(args.config)
|
|
out = pathlib.Path(config.get("post", "out"))
|
|
out.mkdir(parents=True, exist_ok=True)
|
|
|
|
with (
|
|
path.open("rb")
|
|
if (path := out.joinpath("pickle")).exists()
|
|
else gzip.open(path.with_suffix(".gz"), "rb")
|
|
) as f:
|
|
model = pickle.load(f)
|
|
|
|
x0_conf = config.getfloat("post", "x")
|
|
x0_val = model.x[np.argmin(np.abs(model.x - x0_conf))]
|
|
# z0 = config.getfloat("post", "z")
|
|
# z0 = np.linspace(-5, 5, 16)
|
|
c0_ = ((model.x == x0_val)[None, :] & (model.fields["alpha.water"] > 0.95)).any(axis=0)
|
|
c0 = model.coords[c0_][:: (c0_.sum() // 8 + 1)]
|
|
|
|
i0 = np.argmin(
|
|
np.linalg.norm(model.coords[..., None] - c0.T[None, ...], axis=1),
|
|
axis=0,
|
|
)
|
|
|
|
aw = model.fields["alpha.water"][:, i0]
|
|
|
|
U = np.where(aw > 0.95, np.linalg.norm(model.fields["U"][..., i0], axis=1), np.nan)
|
|
P = np.where(aw > 0.95, model.fields["p"][..., i0], np.nan)
|
|
P_rgh = np.where(aw > 0.95, model.fields["p_rgh"][..., i0], np.nan)
|
|
|
|
with plt.rc_context(
|
|
{
|
|
"axes.prop_cycle": cycler(
|
|
color=np.linspace(0, 1, i0.size + 1)[:-1].astype("U")
|
|
),
|
|
"axes.grid": True,
|
|
"axes.xmargin": 0,
|
|
}
|
|
):
|
|
fig, ax = plt.subplots(3, constrained_layout=True)
|
|
ax1, ax2, ax3 = ax
|
|
|
|
ha = ax1.plot(model.t, U, lw=1)
|
|
ax1.set(xlabel="t (s)", ylabel="U (m/s)")
|
|
|
|
ax2.plot(model.t, P * 1e-3, lw=1)
|
|
ax2.set(xlabel="t (s)", ylabel="P (kPa)")
|
|
|
|
ax3.plot(model.t, P_rgh * 1e-3, lw=1)
|
|
ax3.set(xlabel="t (s)", ylabel="P_rgh (kPa)")
|
|
|
|
for a in ax:
|
|
a.set(ylim=0)
|
|
|
|
ax2.legend(
|
|
ha,
|
|
list(
|
|
starmap(lambda x, z: f"x={x:8}m; z={z:8}m", zip(model.x[i0], model.z[i0]))
|
|
),
|
|
bbox_to_anchor=(1.05, 0.5),
|
|
loc="center left",
|
|
)
|
|
|
|
fig.savefig(out.joinpath("fig.pdf"))
|