1
Fork 0
internship/data/processing/projection.py

82 lines
2 KiB
Python

import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
from .lambert import Lambert
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read("config.ini")
bathy_inp = pathlib.Path(config.get("bathy", "sub"))
bathy_out = pathlib.Path(config.get("bathy", "out"))
log.info(f"Loading bathymetry from {bathy_inp}")
bathy_curvi = np.load(bathy_inp)
projection = Lambert()
bathy = np.stack(
(
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
bathy_curvi[:, 2],
),
axis=1
)
log.debug(f"Cartesian bathy: {bathy}")
artha_curvi = np.array(
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
)
buoy_curvi = np.array(
(config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat"))
)
artha = np.asarray(projection.cartesian(*artha_curvi))
buoy = np.asarray(projection.cartesian(*buoy_curvi))
def display():
x = np.linspace(bathy[:, 0].min(), bathy[:, 0].max())
y = np.linspace(bathy[:, 1].min(), bathy[:, 1].max())
X, Y = np.meshgrid(x, y)
Z = interpolate.griddata(
bathy[:, :2], bathy[:, 2], (X, Y), method="nearest"
)
fix, ax = plt.subplots()
ax.pcolormesh(X, Y, Z)
ax.scatter(*artha, c="k")
ax.scatter(*buoy, c="k")
ax.axis("equal")
return ax
D = np.diff(np.stack((artha, buoy)), axis=0)
x = np.arange(-150, np.sqrt((D**2).sum()) + 150)
theta = np.angle(D.dot((1, 1j)))
coords = artha + (x * np.stack((np.cos(theta), np.sin(theta)))).T
z = interpolate.griddata(bathy[:,:2], bathy[:,2], coords)
ax = display()
ax.scatter(*coords.T, c="k", marker=".")
fig_1d, ax_1d = plt.subplots()
ax_1d.plot(x, z)
plt.show(block=True)