1
Fork 0
internship/data/processing/projection.py
2022-03-11 14:55:16 +01:00

102 lines
2.7 KiB
Python

import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
from .lambert import Lambert
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read("config.ini")
inp_root = pathlib.Path(config.get("inp", "root"))
out_root = pathlib.Path(config.get("out", "root"))
bathy_inp = out_root.joinpath(config.get("out", "sub"))
hires_inp = inp_root.joinpath(config.get("inp", "hires"))
bathy_out = inp_root.joinpath(config.get("out", "out"))
log.info(f"Loading bathymetry from {bathy_inp}")
bathy_curvi = np.load(bathy_inp)
projection = Lambert()
bathy = np.stack(
(
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
bathy_curvi[:, 2],
),
axis=1,
)
log.debug(f"Cartesian bathy: {bathy}")
artha_curvi = np.array(
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
)
buoy_curvi = np.array(
(config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat"))
)
artha = np.asarray(projection.cartesian(*artha_curvi))
buoy = np.asarray(projection.cartesian(*buoy_curvi))
D = np.diff(np.stack((artha, buoy)), axis=0)
x = np.arange(
-150,
np.sqrt((D**2).sum()) + 150,
config.getfloat("out", "step", fallback=1),
)
theta = np.angle(D.dot((1, 1j)))
coords = artha + (x * np.stack((np.cos(theta), np.sin(theta)))).T
log.info("Interpolating bathymetry in 1D")
z = interpolate.griddata(bathy[:, :2], bathy[:, 2], coords)
log.debug(f"z: {z}")
_hires = np.genfromtxt(hires_inp)[::-1]
bathy_hires = np.stack(
(
np.linspace(
0,
(_hires.size - 1) * config.getfloat("inp", "hires_step"),
_hires.size,
),
_hires,
),
axis=1,
)
del _hires
log.debug(f"Bathy hires: {bathy_hires}")
z_cr = 5
hires_crossing = np.diff(np.signbit(bathy_hires[:, 1] - z_cr)).nonzero()[0][-1]
log.debug(f"Hires crossing: {hires_crossing}")
z_crossing = np.diff(np.signbit(z - z_cr)).nonzero()[0][-1]
log.debug(f"Z crossing: {z_crossing}")
x_min_hires = x[z_crossing] + (
bathy_hires[:, 0].min() - bathy_hires[hires_crossing, 0]
)
x_max_hires = x[z_crossing] + (
bathy_hires[:, 0].max() - bathy_hires[hires_crossing, 0]
)
log.debug(f"Replacing range: [{x_min_hires},{x_max_hires}]")
flt_x = (x > x_min_hires) & (x < x_max_hires)
z[flt_x] = interpolate.griddata(
(bathy_hires[:, 0],),
bathy_hires[:, 1],
(x[flt_x] - x[z_crossing] + bathy_hires[hires_crossing, 0]),
)