1
Fork 0
internship/swash/processing/r_test.py

52 lines
1.2 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from numpy import random
import scipy.signal as sgl
yi = random.normal(size=2**20)
yr = np.roll(yi, -(2**10))
figy, axy = plt.subplots()
axy.plot(np.arange(2**10, 2**11), yi[2**10 : 2**11])
axy.plot(np.arange(2**10, 2**11), yr[2**10 : 2**11])
figf, axf = plt.subplots()
axf.plot(*sgl.welch(yi))
axf.plot(*sgl.welch(yr))
eta = lambda r: yi + r * yr
u = lambda r: -yi + r * yr
def puv(eta, u):
f, phi_eta = sgl.welch(eta)
phi_u = sgl.welch(u)[1]
phi_eta_u = np.abs(sgl.csd(eta, u)[1].real)
return f, np.sqrt(
(phi_eta + phi_u - 2 * phi_eta_u) / (phi_eta + phi_u + 2 * phi_eta_u)
)
figr, axr = plt.subplots()
for r in np.arange(0, 1.1, 0.1):
axr.plot(*puv(eta(r), u(r)), c="k")
Rn = puv(
eta(r) + 0.4 * random.normal(size=2**20),
u(r) + 0.4 * random.normal(size=2**20),
)
axr.plot(
*Rn,
c="#ff6600",
)
axr.annotate(
f"{r=:.1f}", (Rn[0][0], Rn[1][0]), bbox={"boxstyle": "square", "facecolor": "w"}
)
axr.grid()
axr.autoscale(True, "x", tight=True)
axr.set(ylim=(0, 1), ylabel="R", xlabel="f")
axr.legend(("No noise", "40% noise"), loc="lower left")
figr.savefig("out_r_test.pdf")
plt.show()