1
Fork 0
internship/swash/processing/post_reflex.py

83 lines
2.2 KiB
Python

import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as sgl
from .reflex3s import reflex3s
from .pa.reflex3S import reflex3S
from .pa.PUV import PUV_dam
parser = argparse.ArgumentParser(description="Post-process swash output")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("post")
log.info("Starting post-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp = pathlib.Path(config.get("post", "inp"))
root = pathlib.Path(config.get("swash", "out"))
log.info(f"Reading data from '{inp}'")
x = np.load(inp.joinpath("xp.npy"))
t = np.load(inp.joinpath("tsec.npy"))
botl = np.load(inp.joinpath("botl.npy"))
watl = np.load(inp.joinpath("watl.npy"))
vel = np.load(inp.joinpath("vel.npy"))
x0 = config.getint("post", "x0")
arg_x0 = np.abs(x - x0).argmin()
t0 = config.getfloat("post", "t0")
arg_t0 = np.abs(t - t0).argmin()
dt = np.diff(t).mean()
f = 1 / dt
idx = [arg_x0 - 5, arg_x0, arg_x0 + 7]
wl = watl[arg_t0:, idx]
# Reflex3S
res = reflex3S(*wl.T, *x[idx], botl[idx].mean(), f, 0.02, 0.2)
f_, ai_, ar_ = reflex3s(wl.T, x[idx], botl[idx].mean(), f)
ai, ar, _, _, _, _, fre = res
# Custom PUV
eta = watl[t > t0, arg_x0]
u = vel[t > t0, 0, arg_x0]
phi_eta = sgl.welch(eta, f)
phi_u = sgl.welch(u, f)
phi_eta_u = sgl.csd(eta, u, f)
R = np.sqrt(
(np.abs(phi_eta[1]) + np.abs(phi_u[1]) - 2 * phi_eta_u[1].real)
/ (np.abs(phi_eta[1]) + np.abs(phi_u[1]) + 2 * phi_eta_u[1].real)
)
out = pathlib.Path(config.get("post", "out")).joinpath(f"t{t0}x{x0}")
log.info(f"Saving plots in '{out}'")
out.mkdir(parents=True, exist_ok=True)
plt.plot(fre, np.asarray(ar) / np.asarray(ai))
plt.xlim((0, 0.3))
plt.ylim((0, 1))
plt.savefig(out.joinpath("reflex3s_pa.pdf"))
plt.clf()
plt.plot(f_, ar_ / ai_)
plt.plot(phi_eta[0], R)
plt.xlim((0, 0.3))
plt.ylim((0, 1))
plt.savefig(out.joinpath("reflex3s.pdf"))
# pressk = np.load(inp.joinpath("pressk.npy"))
# press = pressk[:, 1, :]
# res = PUV_dam(vel[arg_t0:, 0, 500], press[arg_t0:, 500], botl[500], f, botl[500]/2, botl[500]/2)
# print(res)