122 lines
3.4 KiB
Python
122 lines
3.4 KiB
Python
import argparse
|
|
import configparser
|
|
import gzip
|
|
import logging
|
|
import multiprocessing as mp
|
|
import pathlib
|
|
import pickle
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.animation as animation
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
|
|
from .olaflow import OFModel
|
|
|
|
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
|
parser.add_argument("-c", "--config", default="config.ini")
|
|
args = parser.parse_args()
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
log = logging.getLogger("ola_post")
|
|
|
|
log.info("Animating olaFlow output")
|
|
config = configparser.ConfigParser()
|
|
config.read(args.config)
|
|
out = pathlib.Path(config.get("post", "out"))
|
|
out.mkdir(parents=True, exist_ok=True)
|
|
|
|
with gzip.open(gzf, "rb") if (
|
|
gzf := out.joinpath("pickle.gz")
|
|
).exists() else gzf.with_suffix("").open("rb") as f:
|
|
model = pickle.load(f)
|
|
|
|
x0 = config.getfloat("post", "x")
|
|
z0 = config.getfloat("post", "z")
|
|
i0 = np.argmin(np.abs((model.x - x0) + 1j * (model.z - z0)))
|
|
|
|
X, Z = np.meshgrid(np.unique(model.x), np.unique(model.z))
|
|
|
|
C = np.where(
|
|
(model.x[:, None, None].astype(np.single) == X[None, :, :].astype(np.single))
|
|
& (model.z[:, None, None].astype(np.single) == Z[None, :, :].astype(np.single))
|
|
)
|
|
|
|
P = np.full((model.t.size, *X.shape), np.nan)
|
|
P[:, C[1], C[2]] = model.fields["porosity"][:, C[0]]
|
|
|
|
AW = np.full((model.t.size, *X.shape), np.nan)
|
|
AW[:, C[1], C[2]] = model.fields["alpha.water"][:, C[0]]
|
|
|
|
U = np.full((model.t.size, *X.shape), np.nan)
|
|
U[:, C[1], C[2]] = np.linalg.norm(model.fields["U"], axis=1)[:, C[0]]
|
|
|
|
fig, ax = plt.subplots(figsize=(19.2, 10.8), dpi=100)
|
|
tit = ax.text(
|
|
0.5,
|
|
0.95,
|
|
f"t={model.t[0]}s",
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
transform=ax.transAxes,
|
|
)
|
|
aw_m = ax.pcolormesh(X, Z, AW[0], vmin=0, vmax=1, cmap="Blues", zorder=1)
|
|
ax.pcolormesh(
|
|
X,
|
|
Z,
|
|
P[1],
|
|
vmin=0,
|
|
vmax=1,
|
|
cmap="Greys_r",
|
|
alpha=(np.nan_to_num(1 - P[1]) / 2).clip(0, 1),
|
|
zorder=1.1,
|
|
)
|
|
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
|
|
|
|
|
|
fig.colorbar(aw_m)
|
|
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
|
|
ax.grid(c="k", alpha=0.2)
|
|
|
|
|
|
def anim(i):
|
|
tit.set_text(f"t={model.t[i]}s")
|
|
aw_m.set_array(AW[i])
|
|
|
|
|
|
|
|
figU, axU = plt.subplots(figsize=(19.2, 10.8), dpi=100)
|
|
u_m = axU.pcolormesh(
|
|
X, Z, U[0], cmap="BuPu", vmin=0, vmax=np.nanquantile(U, .99), zorder=1, alpha=np.nan_to_num(AW[0]).clip(0, 1)
|
|
)
|
|
ur_m = axU.pcolormesh(
|
|
X, Z, U[0], cmap="YlOrBr", vmin=0, vmax=np.nanquantile(U, .99), zorder=1, alpha=1-np.nan_to_num(AW[0]).clip(0, 1)
|
|
)
|
|
# aw_u = axU.contour(X, Z, AW[0], levels=(.5,))
|
|
figU.colorbar(u_m)
|
|
axU.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
|
|
axU.grid(c="k", alpha=0.2)
|
|
titU = axU.text(
|
|
0.5,
|
|
0.95,
|
|
f"t={model.t[0]}s",
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
transform=axU.transAxes,
|
|
)
|
|
|
|
|
|
def animU(i):
|
|
titU.set_text(f"t={model.t[i]}s")
|
|
u_m.set_array(U[i])
|
|
u_m.set_alpha(np.nan_to_num(AW[i]).clip(0, 1))
|
|
ur_m.set_array(U[i])
|
|
ur_m.set_alpha(1-np.nan_to_num(AW[i]).clip(0, 1))
|
|
|
|
|
|
ani = animation.FuncAnimation(fig, anim, frames=model.t.size, interval=1/24)
|
|
aniU = animation.FuncAnimation(figU, animU, frames=model.t.size, interval=1/24)
|
|
|
|
ani.save(out.joinpath("anim.mp4"), fps=24)
|
|
aniU.save(out.joinpath("animU.mp4"), fps=24)
|