164 lines
5.2 KiB
Python
164 lines
5.2 KiB
Python
import argparse
|
|
import configparser
|
|
import logging
|
|
import pathlib
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.dates as mdates
|
|
import numpy as np
|
|
import scipy.signal as sgl
|
|
from scipy import fft
|
|
|
|
parser = argparse.ArgumentParser(description="Pre-process time-series")
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
|
parser.add_argument("-c", "--config", default="config.ini")
|
|
args = parser.parse_args()
|
|
|
|
logging.basicConfig()
|
|
log = logging.getLogger("bathy")
|
|
log.setLevel(max((10, 20 - 10 * args.verbose)))
|
|
|
|
log.info("Starting time-series pre-processing")
|
|
config = configparser.ConfigParser()
|
|
config.read(args.config)
|
|
|
|
inp_root = pathlib.Path(config.get("inp", "root"), "cerema/raw")
|
|
out_root = pathlib.Path(config.get("out", "root"))
|
|
out_root.mkdir(exist_ok=True)
|
|
|
|
raw_ts = []
|
|
#for tsi in sorted(inp_root.glob("2017022817*.raw")):
|
|
for tsi in sorted(inp_root.glob("*.raw")):
|
|
raw_ts.append(
|
|
np.loadtxt(
|
|
tsi,
|
|
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
|
|
delimiter=",",
|
|
max_rows=2304,
|
|
)
|
|
)
|
|
log.debug(f"Loading <{tsi}>")
|
|
n = len(raw_ts)
|
|
raw_ts = np.concatenate(raw_ts)
|
|
log.debug(f"{raw_ts=}")
|
|
|
|
t0 = np.linspace(0, 30 * 60 * n, 2304 * n, endpoint=False)
|
|
t = (t0 * 1e3).astype("timedelta64[ms]") + np.datetime64("2017-02-28T00:00")
|
|
|
|
if (errs := np.count_nonzero(raw_ts["state"])) != 0:
|
|
log.warning(f"{errs} transmission errors!")
|
|
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
|
|
# log.debug(f"{t[raw_ts['state'] != 0]}")
|
|
|
|
sos = sgl.butter(1, 0.2, btype="lowpass", fs=2305 / (30 * 60), output="sos")
|
|
z = sgl.sosfiltfilt(sos, raw_ts["z"]*1e-2)
|
|
cr0 = np.where(np.diff(np.sign(z)))[0]
|
|
|
|
wave = np.fromiter(
|
|
(
|
|
np.max(np.abs(z[cr0[i - 1] : cr0[i]])) + np.max(np.abs(z[cr0[i] : cr0[i + 1]]))
|
|
for i in range(1, len(cr0) - 1)
|
|
),
|
|
dtype=np.single,
|
|
)
|
|
|
|
log.debug(f"{wave=}")
|
|
log.debug(f"{t=}")
|
|
|
|
# plt.plot(t[cr0[1:-1]], wave)
|
|
|
|
nw = len(wave) / 2
|
|
nlw = np.sum(wave > 12)
|
|
H13 = np.quantile(wave, 2 / 3)
|
|
log.info(f"Number of waves: {nw}")
|
|
log.info(f"Number of waves >m: {nlw}")
|
|
log.info(f"Proportion: {nlw/nw:e}")
|
|
log.info(f"H1/3: {H13}m")
|
|
|
|
dt = 30 * 60 / 2304
|
|
# Mlims = (int(5 / dt), int(30 / dt))
|
|
N = t.size // 24
|
|
s0 = 2 * dt
|
|
dj = 0.5
|
|
J = 1 / dj * np.log2(N * dt / s0)
|
|
j = np.arange(0, J)
|
|
sj = s0 * 2 ** (j * dj)
|
|
# sj = s0 * np.arange(1, 2 ** (J * dj))
|
|
Mw = sj / dt
|
|
Mlims = sj[[0, -1]]
|
|
M = (np.abs(sgl.cwt(raw_ts["z"]*1e-2, sgl.morlet2, Mw))/np.var(raw_ts["z"]*1e-2))**2
|
|
# M = np.abs(sgl.cwt(z, sgl.morlet, Mw))
|
|
v = np.max(np.abs(M))
|
|
|
|
fig, ax = plt.subplots()
|
|
# ax2 = ax.twinx()
|
|
# ax.plot(t0, raw_ts["z"], lw=.5, c="k", alpha=.2)
|
|
# ax.plot(t0, z, ls="-.", lw=.25, alpha=.2, c="k")
|
|
st = raw_ts["state"][raw_ts["state"] != 0]
|
|
c = np.asarray(["g", "b", "r"])
|
|
# ax.vlines(t0[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
|
|
# ax.set(xlabel="t (s)", ylabel="z (cm)")
|
|
# ax.set(xlim=(17 * 3600 + 20 * 60, 17 * 3600 + 30 * 60))
|
|
ax.grid(c="k", alpha=0.2)
|
|
ax.set(zorder=1, frame_on=False)
|
|
ax.semilogy()
|
|
a = [t0[0], t0[-1], *Mlims]
|
|
# c = ax.imshow(M, extent=a, aspect="auto", cmap="plasma", vmin=0)
|
|
c = ax.contourf(t, sj, M, cmap="Greys", vmin=0, vmax=v)
|
|
fig.colorbar(c)
|
|
|
|
bigw = np.where(wave > 12)[0]
|
|
ym = 1.1 * np.max(np.abs(z))
|
|
for w in bigw:
|
|
fig, (ax2, ax) = plt.subplots(2, figsize=(15/2.54, 2/3*10/2.54), constrained_layout=True)
|
|
i0 = cr0[w] - int(1200 / dt)
|
|
i1 = cr0[w + 2] + int(1200 / dt)
|
|
# a = [t0[i0], t0[i1], *Mlims]
|
|
# c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v)
|
|
c = ax2.contourf(
|
|
t[i0:i1],
|
|
sj,
|
|
M[:, i0:i1],
|
|
cmap="Greys",
|
|
vmin=0,
|
|
levels=[1, 2.5, 5, 10, 20, 40],
|
|
extend="both",
|
|
)
|
|
fig.colorbar(c, ax=ax2, label="NWPS")
|
|
ax.plot(t[i0:i1], (raw_ts["z"]*1e-2)[i0:i1], c="k", lw=1)
|
|
#ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.")
|
|
# ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
|
|
ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym))
|
|
ax2.set(ylabel="T (s)")
|
|
ax2.grid(c="k", alpha=0.2)
|
|
ax2.semilogy()
|
|
ax.grid(c="k", alpha=.2)
|
|
#ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.")
|
|
#ax.set(zorder=1, frame_on=False)
|
|
ax.set(xlabel="t (s)", ylabel="z (m)")
|
|
ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1)
|
|
|
|
locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
|
|
formatter = mdates.ConciseDateFormatter(locator)
|
|
ax.xaxis.set_major_locator(locator)
|
|
ax.xaxis.set_major_formatter(formatter)
|
|
ax2.xaxis.set_major_locator(locator)
|
|
ax2.xaxis.set_major_formatter(formatter)
|
|
ax2.axes.set_xticklabels([])
|
|
|
|
ax2.set_rasterization_zorder(1.5)
|
|
|
|
fig.savefig(out_root.joinpath(f"wavelet{w}.pdf"), dpi=300)
|
|
fig.savefig(out_root.joinpath(f"wavelet{w}.png"), dpi=200)
|
|
|
|
#fig, ax = plt.subplots(constrained_layout=True)
|
|
## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1)
|
|
#ax.plot(*sgl.welch(raw_ts["z"], 1 / dt), c="k", alpha=0.2, label="PSD")
|
|
#ax.plot(1 / sj, N * np.mean(M, axis=1), c="k", label="CWT")
|
|
## ax.grid(color="k", alpha=.2)
|
|
#ax.set(xlabel="T (s)", ylabel="PSD")
|
|
## ax2.set(ylabel="Average Wavelet Transform")
|
|
#ax.set(xlim=1 / Mlims)
|
|
#ax.legend()
|
|
|
|
plt.show()
|