2022-04-13 14:08:55 +02:00
|
|
|
import argparse
|
2022-04-14 12:37:42 +02:00
|
|
|
import gzip
|
2022-04-13 14:08:55 +02:00
|
|
|
import logging
|
2022-04-13 15:10:41 +02:00
|
|
|
import multiprocessing as mp
|
2022-04-13 14:08:55 +02:00
|
|
|
import pathlib
|
|
|
|
import pickle
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.animation as animation
|
2022-04-15 11:42:12 +02:00
|
|
|
from matplotlib.gridspec import GridSpec
|
2022-06-24 16:50:38 +02:00
|
|
|
from matplotlib.ticker import MultipleLocator
|
2022-04-13 14:08:55 +02:00
|
|
|
import numpy as np
|
|
|
|
from scipy import interpolate
|
|
|
|
|
|
|
|
from .olaflow import OFModel
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
|
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
2022-05-04 10:52:40 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"-o",
|
|
|
|
"--output",
|
|
|
|
type=pathlib.Path,
|
|
|
|
help="Output directory for pickled data",
|
|
|
|
required=True,
|
|
|
|
)
|
2022-05-09 12:53:13 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"-m",
|
|
|
|
"--max",
|
|
|
|
help="Only compute maximum rather than animation",
|
|
|
|
action="store_true",
|
|
|
|
)
|
2022-06-24 16:50:38 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"-i",
|
|
|
|
"--initial",
|
|
|
|
help="Only compute initial domain",
|
|
|
|
action="store_true",
|
|
|
|
)
|
2022-04-13 14:08:55 +02:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
|
|
log = logging.getLogger("ola_post")
|
|
|
|
|
2022-04-14 12:38:49 +02:00
|
|
|
log.info("Animating olaFlow output")
|
2022-05-04 10:52:40 +02:00
|
|
|
out = args.output
|
2022-04-14 12:37:42 +02:00
|
|
|
out.mkdir(parents=True, exist_ok=True)
|
2022-04-13 14:08:55 +02:00
|
|
|
|
2022-04-15 10:31:55 +02:00
|
|
|
with (
|
|
|
|
path.open("rb")
|
|
|
|
if (path := out.joinpath("pickle")).exists()
|
|
|
|
else gzip.open(path.with_suffix(".gz"), "rb")
|
|
|
|
) as f:
|
2022-04-13 14:08:55 +02:00
|
|
|
model = pickle.load(f)
|
|
|
|
|
2022-04-15 11:22:36 +02:00
|
|
|
x0, idx0 = np.unique(model.x.astype(np.half), return_inverse=True)
|
|
|
|
z0, idz0 = np.unique(model.z.astype(np.half), return_inverse=True)
|
2022-04-13 14:08:55 +02:00
|
|
|
|
2022-05-09 12:53:13 +02:00
|
|
|
ix0 = np.argsort(x0)
|
|
|
|
iz0 = np.argsort(z0)[::-1]
|
|
|
|
|
2022-04-15 11:22:36 +02:00
|
|
|
X, Z = np.meshgrid(x0, z0)
|
2022-04-13 14:08:55 +02:00
|
|
|
|
|
|
|
P = np.full((model.t.size, *X.shape), np.nan)
|
2022-05-09 12:53:13 +02:00
|
|
|
P[:, iz0[idz0], ix0[idx0]] = model.fields["porosity"]
|
2022-04-13 15:10:41 +02:00
|
|
|
|
2022-04-13 14:08:55 +02:00
|
|
|
AW = np.full((model.t.size, *X.shape), np.nan)
|
2022-05-09 12:53:13 +02:00
|
|
|
AW[:, iz0[idz0], ix0[idx0]] = model.fields["alpha.water"]
|
2022-04-13 14:08:55 +02:00
|
|
|
|
2022-04-13 15:10:41 +02:00
|
|
|
U = np.full((model.t.size, *X.shape), np.nan)
|
2022-05-09 12:53:13 +02:00
|
|
|
U[:, iz0[idz0], ix0[idx0]] = np.linalg.norm(model.fields["U"], axis=1)
|
2022-04-13 15:10:41 +02:00
|
|
|
|
2022-06-24 16:50:38 +02:00
|
|
|
fig = plt.figure(
|
|
|
|
figsize=(15 / 2.54, 4 / 2.54), dpi=200, constrained_layout=True
|
|
|
|
)
|
|
|
|
gs = GridSpec(
|
|
|
|
3 if not args.initial else 1,
|
|
|
|
1,
|
|
|
|
figure=fig,
|
|
|
|
height_ratios=[1, 0.1, 0.1] if not args.initial else [1],
|
|
|
|
)
|
2022-04-15 11:42:12 +02:00
|
|
|
ax = fig.add_subplot(gs[0])
|
2022-06-24 16:50:38 +02:00
|
|
|
if not args.initial:
|
|
|
|
cax1 = fig.add_subplot(gs[1])
|
|
|
|
cax2 = fig.add_subplot(gs[2])
|
2022-05-09 12:53:13 +02:00
|
|
|
aw_m = ax.imshow(
|
|
|
|
AW[0],
|
|
|
|
vmin=0,
|
|
|
|
vmax=1,
|
|
|
|
extent=(x0.min(), x0.max(), z0.min(), z0.max()),
|
|
|
|
cmap="Blues",
|
|
|
|
zorder=1,
|
2022-04-13 14:08:55 +02:00
|
|
|
)
|
2022-05-09 12:53:13 +02:00
|
|
|
p_m = ax.imshow(
|
2022-04-13 14:08:55 +02:00
|
|
|
P[1],
|
|
|
|
vmin=0,
|
|
|
|
vmax=1,
|
2022-05-09 12:53:13 +02:00
|
|
|
extent=(x0.min(), x0.max(), z0.min(), z0.max()),
|
2022-04-13 14:08:55 +02:00
|
|
|
cmap="Greys_r",
|
2022-04-13 15:10:41 +02:00
|
|
|
alpha=(np.nan_to_num(1 - P[1]) / 2).clip(0, 1),
|
2022-04-13 14:08:55 +02:00
|
|
|
zorder=1.1,
|
|
|
|
)
|
|
|
|
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
|
|
|
|
|
|
|
|
|
2022-06-24 16:50:38 +02:00
|
|
|
if not args.initial:
|
|
|
|
fig.colorbar(
|
|
|
|
aw_m, label=r"$\alpha_w$", cax=cax1, shrink=0.6, orientation="horizontal"
|
|
|
|
)
|
|
|
|
fig.colorbar(p_m, label=r"Porosity", cax=cax2, shrink=0.6, orientation="horizontal")
|
2022-04-15 11:42:12 +02:00
|
|
|
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#000000")
|
2022-04-13 15:10:41 +02:00
|
|
|
ax.grid(c="k", alpha=0.2)
|
2022-06-24 16:50:38 +02:00
|
|
|
ax.xaxis.set_minor_locator(MultipleLocator(5))
|
|
|
|
ax.yaxis.set_minor_locator(MultipleLocator(5))
|
2022-04-13 15:10:41 +02:00
|
|
|
|
|
|
|
|
2022-05-09 13:21:11 +02:00
|
|
|
figU = plt.figure()
|
2022-05-09 12:53:13 +02:00
|
|
|
gsU = GridSpec(
|
|
|
|
2 if args.max else 3,
|
|
|
|
1,
|
|
|
|
figure=figU,
|
|
|
|
height_ratios=[1, 0.05] if args.max else [1, 0.05, 0.05],
|
|
|
|
)
|
2022-04-15 11:42:12 +02:00
|
|
|
axU = figU.add_subplot(gsU[0])
|
|
|
|
caxu1 = figU.add_subplot(gsU[1])
|
2022-05-09 12:53:13 +02:00
|
|
|
if not args.max:
|
|
|
|
caxu2 = figU.add_subplot(gsU[2])
|
|
|
|
u_m = axU.imshow(
|
2022-04-15 10:31:55 +02:00
|
|
|
U[0],
|
|
|
|
cmap="BuPu",
|
|
|
|
vmin=0,
|
2022-05-18 10:05:49 +02:00
|
|
|
vmax=20,
|
2022-05-09 12:53:13 +02:00
|
|
|
extent=(x0.min(), x0.max(), z0.min(), z0.max()),
|
2022-04-15 10:31:55 +02:00
|
|
|
zorder=1,
|
|
|
|
alpha=np.nan_to_num(AW[0]).clip(0, 1),
|
2022-04-13 15:10:41 +02:00
|
|
|
)
|
2022-05-09 12:53:13 +02:00
|
|
|
ur_m = axU.imshow(
|
2022-04-15 10:31:55 +02:00
|
|
|
U[0],
|
|
|
|
cmap="YlOrBr",
|
|
|
|
vmin=0,
|
2022-05-18 10:05:49 +02:00
|
|
|
vmax=20,
|
2022-05-09 12:53:13 +02:00
|
|
|
extent=(x0.min(), x0.max(), z0.min(), z0.max()),
|
2022-04-15 10:31:55 +02:00
|
|
|
zorder=1,
|
|
|
|
alpha=1 - np.nan_to_num(AW[0]).clip(0, 1),
|
2022-04-13 15:10:41 +02:00
|
|
|
)
|
|
|
|
# aw_u = axU.contour(X, Z, AW[0], levels=(.5,))
|
|
|
|
axU.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
|
|
|
|
axU.grid(c="k", alpha=0.2)
|
2022-04-15 11:42:12 +02:00
|
|
|
figU.colorbar(u_m, label=r"$U_w$", cax=caxu1, shrink=0.6, orientation="horizontal")
|
2022-04-13 15:10:41 +02:00
|
|
|
|
2022-04-15 11:42:12 +02:00
|
|
|
|
2022-05-09 12:53:13 +02:00
|
|
|
if args.max:
|
|
|
|
aw_m.set_array(AW.max(axis=0))
|
|
|
|
|
|
|
|
u_m.set_array(np.nanmax(np.where(AW > 0.5, U, np.nan), axis=0, initial=0))
|
|
|
|
u_m.set_alpha(1)
|
|
|
|
u_m.set_cmap("hot_r")
|
|
|
|
ur_m.remove()
|
|
|
|
|
|
|
|
fig.savefig(out.joinpath("max_aw.pdf"))
|
|
|
|
figU.savefig(out.joinpath("max_U.pdf"))
|
2022-06-24 16:50:38 +02:00
|
|
|
elif args.initial:
|
|
|
|
aw_m.set_array(AW[0])
|
|
|
|
ax.vlines(-20, -15, 15, color="k", lw=1, ls="--", label="Measurements")
|
|
|
|
ax.text(-20, 15, "Measurements", ha="right", va="bottom")
|
|
|
|
|
|
|
|
fig.savefig(out.joinpath("aw_t0.pdf"))
|
|
|
|
fig.savefig(out.joinpath("aw_t0.jpg"), dpi=200)
|
2022-05-09 12:53:13 +02:00
|
|
|
else:
|
2022-05-09 13:21:11 +02:00
|
|
|
fig.set(figwidth=19.2, figheight=10.8, dpi=100)
|
|
|
|
figU.set(figwidth=19.2, figheight=10.8, dpi=100)
|
|
|
|
|
2022-05-09 12:53:13 +02:00
|
|
|
figU.colorbar(ur_m, label=r"$U_a$", cax=caxu2, shrink=0.6, orientation="horizontal")
|
|
|
|
|
|
|
|
tit = ax.text(
|
|
|
|
0.5,
|
|
|
|
0.95,
|
|
|
|
f"t={model.t[0]}s",
|
|
|
|
horizontalalignment="center",
|
|
|
|
verticalalignment="top",
|
|
|
|
transform=ax.transAxes,
|
|
|
|
)
|
|
|
|
titU = axU.text(
|
|
|
|
0.5,
|
|
|
|
0.95,
|
|
|
|
f"t={model.t[0]}s",
|
|
|
|
horizontalalignment="center",
|
|
|
|
verticalalignment="top",
|
|
|
|
transform=axU.transAxes,
|
|
|
|
)
|
|
|
|
|
|
|
|
def anim(i):
|
|
|
|
tit.set_text(f"t={model.t[i]}s")
|
|
|
|
aw_m.set_array(AW[i])
|
|
|
|
|
|
|
|
def animU(i):
|
|
|
|
titU.set_text(f"t={model.t[i]}s")
|
|
|
|
u_m.set_array(U[i])
|
|
|
|
u_m.set_alpha(np.nan_to_num(AW[i]).clip(0, 1))
|
|
|
|
ur_m.set_array(U[i])
|
|
|
|
ur_m.set_alpha(1 - np.nan_to_num(AW[i]).clip(0, 1))
|
|
|
|
|
|
|
|
ani = animation.FuncAnimation(fig, anim, frames=model.t.size, interval=1 / 24)
|
|
|
|
aniU = animation.FuncAnimation(figU, animU, frames=model.t.size, interval=1 / 24)
|
|
|
|
|
|
|
|
ani.save(out.joinpath("anim.mp4"), fps=24)
|
|
|
|
aniU.save(out.joinpath("animU.mp4"), fps=24)
|