1
Fork 0
internship/olaflow/processing/sws_ola.py

65 lines
1.7 KiB
Python
Raw Normal View History

2022-03-28 10:15:36 +02:00
import argparse
import configparser
import logging
import pathlib
2022-03-29 09:47:45 +02:00
import matplotlib.pyplot as plt
2022-03-28 10:15:36 +02:00
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
2022-03-29 09:47:45 +02:00
parser = argparse.ArgumentParser(description="Convert swash output to olaFlow input")
2022-03-28 10:15:36 +02:00
parser.add_argument("-v", "--verbose", action="count", default=0)
2022-03-29 09:38:11 +02:00
parser.add_argument("-c", "--config", default="config.ini")
parser.add_argument("-o", "--output", type=pathlib.Path)
2022-03-28 10:15:36 +02:00
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("sws_ola")
log.info("Starting sws -> olaFlow converter")
config = configparser.ConfigParser()
2022-03-29 09:38:11 +02:00
config.read(args.config)
2022-03-28 10:15:36 +02:00
sws_out = pathlib.Path(config.get("swash", "np_out"))
2022-03-29 09:47:45 +02:00
2022-03-28 10:59:35 +02:00
def data(var):
return np.load(sws_out.joinpath(f"{var}.npy"))
2022-03-29 09:47:45 +02:00
t0 = config.getfloat("olaflow", "t0")
2022-04-08 12:43:26 +02:00
x = data("x")
t = data("t")
2022-03-28 10:59:35 +02:00
2022-04-15 10:31:55 +02:00
arg_t0 = np.argmin(np.abs(t - t0 * 1e3))
2022-03-28 10:59:35 +02:00
watl = data("watl")
zk = data("zk")
2022-04-08 12:43:26 +02:00
velk, _ = data("velk")
2022-03-28 10:59:35 +02:00
vz = data("vz")
2022-03-28 10:15:36 +02:00
olaflow_root = args.output
2022-03-28 10:15:36 +02:00
model = OFModel(olaflow_root)
model.read_mesh()
2022-04-15 10:31:55 +02:00
level = config.getfloat("bathy", "level", fallback=0.0)
watl_t = interpolate.interp1d(x, watl[arg_t0] + level)
2022-03-28 10:15:36 +02:00
alpha_water = np.where(model.z < watl_t(model.x), 1, 0)
zk_t = interpolate.interp1d(x, zk[arg_t0] + level)
velk_t = interpolate.interp1d(x, velk[arg_t0, :, :])(model.x)
vz_t = interpolate.interp1d(x, vz[arg_t0])(model.x)
2022-03-28 10:59:35 +02:00
zk_tl = zk_t(model.x)
ux = np.zeros(model.x.shape)
uy = np.zeros(model.x.shape)
uz = np.zeros(model.x.shape)
for zk_l, velk_l, vz_l in zip(zk_tl, velk_t, vz_t):
ux = np.where(model.z < zk_l, velk_l, ux)
uz = np.where(model.z < zk_l, vz_l, uz)
2022-03-28 10:15:36 +02:00
model.write_field("alpha.water", alpha_water)
2022-03-28 10:59:35 +02:00
model.write_vector_field("U", np.stack((ux, uy, uz)).T)