2022-03-28 10:15:36 +02:00
|
|
|
import argparse
|
|
|
|
import configparser
|
|
|
|
import logging
|
|
|
|
import pathlib
|
|
|
|
|
2022-03-29 09:47:45 +02:00
|
|
|
import matplotlib.pyplot as plt
|
2022-03-28 10:15:36 +02:00
|
|
|
import numpy as np
|
|
|
|
from scipy import interpolate
|
|
|
|
|
|
|
|
from .olaflow import OFModel
|
|
|
|
|
2022-03-29 09:47:45 +02:00
|
|
|
parser = argparse.ArgumentParser(description="Convert swash output to olaFlow input")
|
2022-03-28 10:15:36 +02:00
|
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
2022-03-29 09:38:11 +02:00
|
|
|
parser.add_argument("-c", "--config", default="config.ini")
|
2022-04-11 16:06:36 +02:00
|
|
|
parser.add_argument("-o", "--output", type=pathlib.Path)
|
2022-03-28 10:15:36 +02:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
|
|
log = logging.getLogger("sws_ola")
|
|
|
|
|
|
|
|
log.info("Starting sws -> olaFlow converter")
|
|
|
|
config = configparser.ConfigParser()
|
2022-03-29 09:38:11 +02:00
|
|
|
config.read(args.config)
|
2022-03-28 10:15:36 +02:00
|
|
|
|
|
|
|
sws_out = pathlib.Path(config.get("swash", "np_out"))
|
2022-03-29 09:47:45 +02:00
|
|
|
|
|
|
|
|
2022-03-28 10:59:35 +02:00
|
|
|
def data(var):
|
|
|
|
return np.load(sws_out.joinpath(f"{var}.npy"))
|
|
|
|
|
2022-03-29 09:47:45 +02:00
|
|
|
|
2022-04-11 16:06:36 +02:00
|
|
|
t0 = config.getfloat("olaflow", "t0")
|
2022-04-08 12:43:26 +02:00
|
|
|
x = data("x")
|
|
|
|
t = data("t")
|
2022-03-28 10:59:35 +02:00
|
|
|
|
2022-04-11 16:06:36 +02:00
|
|
|
arg_t0 = np.argmin(np.abs(t - t0*1e3))
|
|
|
|
|
2022-03-28 10:59:35 +02:00
|
|
|
watl = data("watl")
|
|
|
|
zk = data("zk")
|
2022-04-08 12:43:26 +02:00
|
|
|
velk, _ = data("velk")
|
2022-03-28 10:59:35 +02:00
|
|
|
vz = data("vz")
|
2022-03-28 10:15:36 +02:00
|
|
|
|
2022-04-11 16:06:36 +02:00
|
|
|
olaflow_root = args.output
|
2022-03-28 10:15:36 +02:00
|
|
|
model = OFModel(olaflow_root)
|
|
|
|
model.read_mesh()
|
|
|
|
|
2022-04-11 16:06:36 +02:00
|
|
|
watl_t = interpolate.interp1d(x, watl[arg_t0] + config.getfloat("bathy", "level", fallback=0.))
|
2022-03-28 10:15:36 +02:00
|
|
|
alpha_water = np.where(model.z < watl_t(model.x), 1, 0)
|
|
|
|
|
2022-04-11 16:06:36 +02:00
|
|
|
zk_t = interpolate.interp1d(x, zk[arg_t0])
|
|
|
|
velk_t = interpolate.interp1d(x, velk[arg_t0, :, :])(model.x)
|
|
|
|
vz_t = interpolate.interp1d(x, vz[arg_t0])(model.x)
|
2022-03-28 10:59:35 +02:00
|
|
|
zk_tl = zk_t(model.x)
|
|
|
|
|
|
|
|
ux = np.zeros(model.x.shape)
|
|
|
|
uy = np.zeros(model.x.shape)
|
|
|
|
uz = np.zeros(model.x.shape)
|
|
|
|
for zk_l, velk_l, vz_l in zip(zk_tl, velk_t, vz_t):
|
|
|
|
ux = np.where(model.z < zk_l, velk_l, ux)
|
|
|
|
uz = np.where(model.z < zk_l, vz_l, uz)
|
|
|
|
|
2022-03-28 10:15:36 +02:00
|
|
|
model.write_field("alpha.water", alpha_water)
|
2022-03-28 10:59:35 +02:00
|
|
|
model.write_vector_field("U", np.stack((ux, uy, uz)).T)
|
2022-04-11 16:06:36 +02:00
|
|
|
plt.savefig("test.pdf")
|