1
Fork 0

Internship defence

This commit is contained in:
Edgar P. Burkhart 2022-07-09 17:55:47 +02:00
parent 465bc7f235
commit 0e0b963840
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
19 changed files with 279 additions and 248 deletions

BIN
defence/fig/U.pdf Normal file

Binary file not shown.

View file

Before

Width:  |  Height:  |  Size: 2.4 MiB

After

Width:  |  Height:  |  Size: 2.4 MiB

View file

Before

Width:  |  Height:  |  Size: 1.7 MiB

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

View file

Before

Width:  |  Height:  |  Size: 180 KiB

After

Width:  |  Height:  |  Size: 180 KiB

BIN
defence/fig/ts.pdf Normal file

Binary file not shown.

BIN
defence/fig/wavelet.pdf Normal file

Binary file not shown.

BIN
defence/fig/wavelet_sw.pdf Normal file

Binary file not shown.

View file

@ -1192,3 +1192,12 @@
publisher={Multidisciplinary Digital Publishing Institute} publisher={Multidisciplinary Digital Publishing Institute}
} }
@article{dysthe2008,
title={Oceanic rogue waves},
author={Dysthe, Kristian and Krogstad, Harald E and M{\"u}ller, Peter},
journal={Annu. Rev. Fluid Mech.},
volume={40},
pages={287--310},
year={2008},
publisher={Annual Reviews}
}

270
defence/main.tex Normal file
View file

@ -0,0 +1,270 @@
\documentclass[english, 10pt, aspectratio=169]{beamer}
\useoutertheme{infolines}
\usecolortheme{whale}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{inter}
\usepackage{unicode-math}
\setmathfont[mathrm=sym]{Fira Math}
\setmonofont[Ligatures=TeX]{Fira Code}
\usepackage{csquotes}
\usepackage{siunitx}
\usepackage[
backend=biber,
style=iso-authoryear,
sorting=nyt,
]{biblatex}
\bibliography{library}
\title[50T block displacement]{Analysis of the displacement of a large concrete block under an extreme wave.}
\author[Edgar P. Burkhart]{Edgar P. Burkhart \and Stéphane Abadie}
\institute[SIAME]{Université de Pau et des Pays de lAdour, E2S-UPPA, SIAME, France}
\date[2022]{2022}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Contents}
\tableofcontents
\end{frame}
\section{Contexte}
\subsection{Block displacement}
\begin{frame}
\frametitle{Context}
\framesubtitle{Block displacement}
\begin{columns}
\column{.7\textwidth}
\begin{itemize}
\item \citetitle{cox2018extraordinary} \parencite{cox2018extraordinary}
\item \citetitle{shah2013coastal} \parencite{shah2013coastal}
\end{itemize}
\column{.3\textwidth}
\includegraphics[width=\textwidth]{fig/cox.png}
\includegraphics[width=\textwidth]{fig/shah.png}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Context}
\framesubtitle{Analytical equations of block displacement}
\begin{itemize}
\item \citetitle{nott2003waves} \parencite{nott2003waves}
\begin{equation}
u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag}{C_d\frac{ac}{b^2}+C_l}
\end{equation}
\item \citetitle{nandasena2011reassessment} \parencite{nandasena2011reassessment}
\begin{equation}
u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag\left(\cos\theta+\frac cb\sin\theta\right)}
{C_d\frac{c^2}{b^2}+C_l}
\end{equation}
\item \citetitle{weiss2015untangling} \parencite{weiss2015untangling}
\end{itemize}
\end{frame}
\subsection{28-02-2017 event}
\begin{frame}
\frametitle{Context}
\framesubtitle{February 28, 2017 event}
\begin{figure}
\centering
\includegraphics[width=.5\textwidth]{fig/artha.jpg}
\caption{\SI{50}{\tonne} concrete block displaced by a wave onto the crest of the Artha breakwater
($h=\SI{8}{\m}$).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Context}
\framesubtitle{February 28, 2017 event}
\begin{columns}
\column{.6\textwidth}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/ts.pdf}
\caption{Free surface measured during the extreme wave identified on February 28, 2017 at 17:23 UTC
($H=\SI{13.9}{\m}$).}
\end{figure}
\column{.4\textwidth}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/out_orbitals.pdf}
\caption{Trajectory of the wave buoy during this particular wave.}
\end{figure}
\end{columns}
\end{frame}
\section{Results}
\subsection{Wavelet analysis}
\begin{frame}
\frametitle{Wavelet analysis}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/wavelet.pdf}
\caption{Normalized wavelet power spectrum of rogue waves on February 28, 2017.}
\end{figure}
\end{frame}
\subsection{1D SWASH model}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Reflection study}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/bathy.pdf}
\caption{Domain 1 studied with a SWASH model (real case).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Reflection study}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/bathy_nb.pdf}
\caption{Domain 2 studied with a SWASH model (without breakwater).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Reflection study}
\begin{itemize}
\item 1D model over 2 layers (instability with more layers)
\item Mesh with \SI{1}{\m} resolution
\item Spectral boundary condition with buoy spectrum
\item \SI{4}{\hour} model duration (around 1200 waves)
\item Model calibrated by \textcite{poncet2021characterization}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Reflection study}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/maxw.pdf}
\caption{Free surface calculated by swash with spectral boundary condition at the buoy location. The plot is
centered on the largest obtained wave.\newline {\itshape Case 1: Real bathymetry; Case 2: simplified bathymetry (no
breakwater).}}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Wave propagation from the buoy to the breakwater}
\begin{itemize}
\item 1D model over 4 layers (instability with more layers)
\item Mesh with \SI{1}{\m} resolution
\item Free surface elevation boundary condition with raw buoy data
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Wave propagation from the buoy to the breakwater}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/x.pdf}
\caption{Propagation of the studied wave from the buoy to the Artha breakwater.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{1-dimensionnal SWASH model}
\framesubtitle{Wavelet analysis}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/wavelet_sw.pdf}
\caption{Wavelet analysis from free surface elevation computed by SWASH along the SWASH domain.}
\end{figure}
\end{frame}
\subsection{2Dv Olaflow model}
\begin{frame}
\frametitle{Olaflow model in 2 vertical dimensions}
\framesubtitle{Study of the hydrodynamic conditions on the breakwater armour}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/aw_t0.pdf}
\caption{Domain studied with a 2Dv Olaflow model.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Olaflow model in 2 vertical dimensions}
\framesubtitle{Study of the hydrodynamic conditions on the breakwater armour}
\begin{itemize}
\item VOF model based on VARANS equations
\item 2Dv mesh with \SI{50}{\cm} resolution
\item $k-\omega$ SST turbulence model
\item Qualitative calibration using photographs
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Olaflow model in 2 vertical dimensions}
\framesubtitle{Study of the hydrodynamic conditions on the breakwater armour}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/U.pdf}
\caption{Flow velocity computed on the Artha breakwater ($x=\SI{-20}{\m}$); bottom: $z=\SI{5}{\m}$.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Olaflow model in 2 vertical dimensions}
\framesubtitle{Study of the hydrodynamic conditions on the breakwater armour}
\begin{itemize}
\item Flow velocity computed with Olaflow:
\begin{equation}
U = \SI{14.5}{\m\per\s}
\end{equation}
\item Flow velocity calculated using \textcite{nandasena2011reassessment}:
\begin{equation}
U = \SI{19.4}{\m\per\s}
\end{equation}
\item \textcite{weiss2015untangling}: time dependency does matter.
\end{itemize}
\end{frame}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion}
\begin{itemize}
\item Flow velocity lower than \textcite{nandasena2011reassessment}, in accordance with \textcite{lodhi2020role}
\item Time dependency matters, in accordance with \textcite{weiss2015untangling}
\end{itemize}
\end{frame}
\appendix
\section{References}
\begin{frame}[allowframebreaks]
\frametitle{References}
\printbibliography
\end{frame}
\end{document}

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -1,248 +0,0 @@
\documentclass[french, 10pt, aspectratio=169]{beamer}
\useoutertheme{infolines}
\usecolortheme{whale}
\usepackage{polyglossia}
\setmainlanguage{french}
\usepackage{inter}
\usepackage{unicode-math}
\setmathfont[mathrm=sym]{Fira Math}
\setmonofont[Ligatures=TeX]{Fira Code}
\usepackage{csquotes}
\usepackage{siunitx}
\usepackage[
backend=biber,
style=iso-authoryear,
sorting=nyt,
]{biblatex}
\bibliography{library}
\title[Déplacement d'un bloc de 50T]{Sur les conditions de déplacement d'un bloc de 50T par des vagues déferlantes.}
\author[Edgar P. Burkhart]{Edgar P. Burkhart \and Stéphane Abadie}
\institute[SIAME]{Université de Pau et des Pays de lAdour, E2S-UPPA, SIAME, France}
\date[2022]{Workshop Wave over Complex Seabeds 2022}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Sommaire}
\tableofcontents
\end{frame}
\section{Contexte}
\subsection{Déplacement de blocs}
\begin{frame}
\frametitle{Contexte}
\framesubtitle{Déplacement de blocs}
\begin{columns}
\column{.7\textwidth}
\begin{itemize}
\item \citetitle{cox2018extraordinary} \parencite{cox2018extraordinary}
\item \citetitle{shah2013coastal} \parencite{shah2013coastal}
\end{itemize}
\column{.3\textwidth}
\includegraphics[width=\textwidth]{fig/cox.png}
\includegraphics[width=\textwidth]{fig/shah.png}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Contexte}
\framesubtitle{Équations théoriques du déplacement de blocs}
\begin{itemize}
\item \citetitle{nott2003waves} \parencite{nott2003waves}
\begin{equation}
u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag}{C_d\frac{ac}{b^2}+C_l}
\end{equation}
\item \citetitle{nandasena2011reassessment} \parencite{nandasena2011reassessment}
\begin{equation}
u^2\geq\frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag\left(\cos\theta+\frac cb\sin\theta\right)}
{C_d\frac{c^2}{b^2}+C_l}
\end{equation}
\item \citetitle{weiss2015untangling} \parencite{weiss2015untangling}
\end{itemize}
\end{frame}
\subsection{Événement du 28-02-2017}
\begin{frame}
\frametitle{Contexte}
\framesubtitle{Événement du 28 février 2017}
\begin{figure}
\centering
\includegraphics[width=.5\textwidth]{fig/artha.jpg}
\caption{Bloc de béton de 50T déplacé par une vague sur la crête de la digue de l'Artha ($h=\SI{8}{\m}$).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Contexte}
\framesubtitle{Événement du 28 février 2017}
\begin{columns}
\column{.6\textwidth}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/ts.pdf}
\caption{Surface libre mesurée pendant la vague extrême identifiée le 28 février 2017 à 17:23 UTC
($H=\SI{13.9}{\m}$).}
\end{figure}
\column{.4\textwidth}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/out_orbitals.pdf}
\caption{Trajectoire de la bouée lors du passage de cette vague particulière.}
\end{figure}
\end{columns}
\end{frame}
\section{Résultats}
\subsection{Modèle SWASH 1D}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Étude de la réflexion}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/bathy.pdf}
\caption{Domaine 1 étudié avec un modèle SWASH 1D (cas réel).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Étude de la réflexion}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/bathy_nb.pdf}
\caption{Domaine 2 étudié avec un modèle SWASH 1D (sans digue).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Étude de la réflexion}
\begin{itemize}
\item Modèle 1D sur 2 couches (instable au-delà)
\item Maillage de résolution \SI{1}{\m}
\item Condition limite imposée par le spectre mesuré par la bouée
\item Temps d'étude de \SI{4}{\hour} ($\approx 1200$ vagues)
\item Modèle calibré par \textcite{poncet2021characterization}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Étude de la réflexion}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/maxw.pdf}
\caption{Évolution de la surface libre calculée par SWASH avec condition limite de spectre à la position de la
bouée. Le tracé est centré sur la vague la plus grande obtenue. \newline
{\itshape Cas 1: Bathymétrie réelle; Cas 2: Bathymétrie simplifiée (sans digue).}}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Propagation entre la bouée et la digue}
\begin{itemize}
\item Modèle 1D sur 4 couches (instable au-delà)
\item Maillage de résolution \SI{1}{\m}
\item Condition limite imposée par la série temporelle de surface libre mesurée par la bouée
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Modèle SWASH unidimensionnel}
\framesubtitle{Propagation entre la bouée et la digue}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/x.pdf}
\caption{Propagation de la vague supposée responsable du déplacement jusquà la digue de lArtha.}
\end{figure}
\end{frame}
\subsection{Modèle Olaflow 2Dv}
\begin{frame}
\frametitle{Modèle Olaflow en 2 dimensions verticales}
\framesubtitle{Étude des conditions hydrodynamiques sur l'armure de la digue}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/aw_t0.pdf}
\caption{Domaine étudiée avec un modèle Olaflow 2Dv.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Modèle Olaflow en 2 dimensions verticales}
\framesubtitle{Étude des conditions hydrodynamiques sur l'armure de la digue}
\begin{itemize}
\item Modèle VOF (Volume-Of-Fluid) basé sur les équations VARANS (Volume-averaged Reynolds-averaged Navier-Stokes)
\item Maillage de résolution \SI{50}{\cm}
\item Modèle de turbulence $k-\omega$ SST
\item Calibration qualitative sur la base de photographies
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Modèle Olaflow en 2 dimensions verticales}
\framesubtitle{Étude des conditions hydrodynamiques sur l'armure de la digue}
\begin{figure}
\centering
\includegraphics[scale=.75]{fig/U.pdf}
\caption{Vitesse du courant généré par les vagues sur la digue de lArtha (x=-20m).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Modèle Olaflow en 2 dimensions verticales}
\framesubtitle{Étude des conditions hydrodynamiques sur l'armure de la digue}
\begin{itemize}
\item Vitesse du courant obtenue obtenur par Olaflow:
\begin{equation}
U = \SI{17.3}{\m\per\s}
\end{equation}
\item Vitesse du courant obtenue obtenur par \textcite{nandasena2011reassessment}:
\begin{equation}
U = \SI{17.7}{\m\per\s}
\end{equation}
\item \textcite{weiss2015untangling}: la dépendance temporelle a une importance.
\end{itemize}
\end{frame}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion}
\begin{itemize}
\item Vitesse de courant obtenue cohérente avec \textcite{nandasena2011reassessment}
\item Dépendance temporelle en accord avec \textcite{weiss2015untangling}
\item Existence d'autres vagues similaires durant la même tempête ?
\end{itemize}
\end{frame}
\appendix
\section{Bibliographie}
\begin{frame}[allowframebreaks]
\frametitle{Bibliographie}
\printbibliography
\end{frame}
\end{document}