1
Fork 0

Biblio: models

This commit is contained in:
Edgar P. Burkhart 2022-02-09 16:14:38 +01:00
parent 623825baf7
commit 1a0f74103b
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
3 changed files with 225 additions and 6 deletions

View file

@ -149,7 +149,7 @@ of the sensors, showing that the time delay between sensors leads to a peak in
the reflection coefficient at a frequency related to this time delta. the reflection coefficient at a frequency related to this time delta.
%%% TODO? %%% %%% TODO? %%%
%\begin{itemize} \item \cite{sheremet2002observations}: \end{itemize} % \cite{sheremet2002observations}
\subsection{Conclusion} \subsection{Conclusion}
@ -170,10 +170,65 @@ should then be used to evaluate the reflection coefficient of the Artha
breakwater and to separate the incident and reflected wave components from the breakwater and to separate the incident and reflected wave components from the
measured data. measured data.
\section{Modeling wave impact on a breakwater} \section{Modelling wave impact on a breakwater}
Modelling rubble-mound breakwaters such as the Artha breakwater requires
complex considerations on several aspects. First of all, an accurate of the
fluid's behavior in the porous armour of the breakwater is necessary. Then,
adequate turbulence models are needed in order to obtain accurate results.
Several types of models have been developped that can be used to study breaking
wave flow on a porous breakwater.
\subsection{SPH models} \subsection{SPH models}
Smoothed-Particle Hydrodynamics (SPH) models rely on a Lagrangian
representation of the fluid.
\subsubsection{Porosity modelling}
\cite{jiang2007mesoscale}
\cite{jutzi2008numerical}
\cite{shao2010}
\cite{altomare2014numerical}
\cite{kunz2016study}
\textbf{\cite{ren2016improved}}
\cite{pahar2016modeling}
\cite{peng2017multiphase}
\cite{wen20183d}
\cite{kazemi2020sph}
\subsubsection{Wave generation}
\cite{yim2008numerical}
\cite{altomare2017long}
\cite{wen2018non}
\subsection{VARANS models} \subsection{VARANS models}
\cite{van1995wave,troch1999development}
COBRAS \parencite{liu1999numerical}: spatially averaged RANS
with $k-\varepsilon$ turbulence model. Drag forces modeled by empirical linear
and non-linear friction terms; \cite{hsu2002numerical}: introduced VARANS in
order to account for small scale turbulence inside the porous media.
->
COBRAS-UC/IH2VOF \parencite{losada2008numerical,lara2008wave}: VOF VARANS (2D);
refactor of COBRAS code, with improved wave generation, improvement of input
and output data.
->
IH3VOF \parencite{del2011three}: 3D VOF VARANS, updated porous media equations,
optimization of accuracy vs computation requirements, specific boundary
conditions, validation. Adding SST model.
->
IHFOAM/olaFlow \parencite{higuera2015application}: Rederivation of
\cite{del2011three}, add time-varying porosity; Improvement to wave generation
and absorption; implementation in OpenFOAM; extensive validation; application
to real coastal structures.
\cite{vieira2021novel}: Use of artificial neural networks to determine porosity
parameter for VOF VARANS model.
\subsection{Other}
BEM: \cite{hall1994boundary,koley2020numerical}
\section{Modeling block displacement} \section{Modeling block displacement}

View file

@ -534,7 +534,7 @@
publisher={Elsevier} publisher={Elsevier}
} }
@article{PARIS20111, @article{paris2011,
title={Boulders as a signature of storms on rock coasts}, title={Boulders as a signature of storms on rock coasts},
journal={Marine Geology}, journal={Marine Geology},
volume={283}, volume={283},
@ -560,7 +560,7 @@
DOI={10.5194/nhess-16-737-2016} DOI={10.5194/nhess-16-737-2016}
} }
@article{SHAO2010304, @article{shao2010,
title={Incompressible SPH flow model for wave interactions with porous media}, title={Incompressible SPH flow model for wave interactions with porous media},
journal={Coastal Engineering}, journal={Coastal Engineering},
volume={57}, volume={57},
@ -730,3 +730,167 @@
year={1985} year={1985}
} }
@article{peng2017multiphase,
title={Multiphase SPH modeling of free surface flow in porous media with variable porosity},
author={Peng, Chong and Xu, Guofang and Wu, Wei and Yu, Hai-sui and Wang, Chun},
journal={Computers and Geotechnics},
volume={81},
pages={239--248},
year={2017},
publisher={Elsevier}
}
@article{jiang2007mesoscale,
title={Mesoscale SPH modeling of fluid flow in isotropic porous media},
author={Jiang, Fangming and Oliveira, M{\'o}nica SA and Sousa, Antonio CM},
journal={Computer Physics Communications},
volume={176},
number={7},
pages={471--480},
year={2007},
publisher={Elsevier}
}
@article{jutzi2008numerical,
title={Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH hydrocode},
author={Jutzi, Martin and Benz, Willy and Michel, Patrick},
journal={Icarus},
volume={198},
number={1},
pages={242--255},
year={2008},
publisher={Elsevier}
}
@article{ren2016improved,
title={Improved SPH simulation of wave motions and turbulent flows through porous media},
author={Ren, Bing and Wen, Hongjie and Dong, Ping and Wang, Yongxue},
journal={Coastal Engineering},
volume={107},
pages={14--27},
year={2016},
publisher={Elsevier}
}
@article{kunz2016study,
title={Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments},
author={Kunz, P and Zarikos, IM and Karadimitriou, NK and Huber, M and Nieken, U and Hassanizadeh, SM},
journal={Transport in Porous Media},
volume={114},
number={2},
pages={581--600},
year={2016},
publisher={Springer}
}
@article{kazemi2020sph,
title={SPH-based numerical treatment of the interfacial interaction of flow with porous media},
author={Kazemi, Ehsan and Tait, Simon and Shao, Songdong},
journal={International Journal for Numerical Methods in Fluids},
volume={92},
number={4},
pages={219--245},
year={2020},
publisher={Wiley Online Library}
}
@article{wen20183d,
title={3D SPH porous flow model for wave interaction with permeable structures},
author={Wen, Hongjie and Ren, Bing and Wang, Guoyu},
journal={Applied ocean research},
volume={75},
pages={223--233},
year={2018},
publisher={Elsevier}
}
@article{pahar2016modeling,
title={Modeling free-surface flow in porous media with modified incompressible SPH},
author={Pahar, Gourabananda and Dhar, Anirban},
journal={Engineering Analysis with Boundary Elements},
volume={68},
pages={75--85},
year={2016},
publisher={Elsevier}
}
@article{altomare2017long,
title={Long-crested wave generation and absorption for SPH-based DualSPHysics model},
author={Altomare, Corrado and Dom{\'\i}nguez, Jose M and Crespo, AJC and Gonz{\'a}lez-Cao, J and Suzuki, T and G{\'o}mez-Gesteira, M and Troch, P},
journal={Coastal Engineering},
volume={127},
pages={37--54},
year={2017},
publisher={Elsevier}
}
@article{yim2008numerical,
title={Numerical simulations of wave generation by a vertical plunger using RANS and SPH models},
author={Yim, Solomon C and Yuk, D and Panizzo, A and Di Risio, Marcello and Liu, PL-F},
journal={Journal of waterway, port, coastal, and ocean engineering},
volume={134},
number={3},
pages={143--159},
year={2008},
publisher={American Society of Civil Engineers}
}
@article{wen2018non,
title={A non-reflective spectral wave maker for SPH modeling of nonlinear wave motion},
author={Wen, Hongjie and Ren, Bing},
journal={Wave motion},
volume={79},
pages={112--128},
year={2018},
publisher={Elsevier}
}
@article{vieira2021novel,
title={Novel time-efficient approach to calibrate VARANS-VOF models for simulation of wave interaction with porous structures using Artificial Neural Networks},
author={Vieira, Filipe and Taveira-Pinto, Francisco and Rosa-Santos, Paulo},
journal={Ocean Engineering},
volume={235},
pages={109375},
year={2021},
publisher={Elsevier}
}
@article{liu1999numerical,
title={Numerical modeling of wave interaction with porous structures},
author={Liu, Philip L-F and Lin, Pengzhi and Chang, Kuang-An and Sakakiyama, Tsutomu},
journal={Journal of waterway, port, coastal, and ocean engineering},
volume={125},
number={6},
pages={322--330},
year={1999},
publisher={American Society of Civil Engineers}
}
@article{hsu2002numerical,
title={A numerical model for wave motions and turbulence flows in front of a composite breakwater},
author={Hsu, Tian-Jian and Sakakiyama, Tsutomu and Liu, Philip L-F},
journal={Coastal Engineering},
volume={46},
number={1},
pages={25--50},
year={2002},
publisher={Elsevier}
}
@incollection{hall1994boundary,
title={Boundary element method},
author={Hall, William S},
booktitle={The boundary element method},
pages={61--83},
year={1994},
publisher={Springer}
}
@incollection{van1995wave,
title={Wave action on and in permeable structures},
author={Van Gent, MRA and T{\"o}jnjes, P and Petit, HAH and Van den Bosch, P},
booktitle={Coastal Engineering 1994},
pages={1739--1753},
year={1995}
}

View file

@ -54,11 +54,11 @@ oetjen2021experiments,oetjen2020significance}
Très intéressant: \cite{weiss2017toward}, Très intéressant: \cite{weiss2017toward},
\cite{sheremet2002observations,sheremet2016triads} \cite{sheremet2002observations,sheremet2016triads}
\paragraph{block transport by waves} \cite{imamura2008numerical, \paragraph{block transport by waves} \cite{imamura2008numerical,
barbano2010large,PARIS20111,biolchi2016} barbano2010large,paris2011,biolchi2016}
\section{Other} \section{Other}
\cite{miche1951} \cite{miche1951}
\cite{isobe1985method} \cite{isobe1985method}
\section{Flow in porous media} \section{Flow in porous media}
\paragraph{wave flow porous media} \cite{SHAO2010304} \paragraph{wave flow porous media} \cite{shao2010}