1
Fork 0

Merge branch 'swash'

This commit is contained in:
Edgar P. Burkhart 2022-04-01 17:11:56 +02:00
commit 5c20dc3db7
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
4 changed files with 441 additions and 236 deletions

View file

@ -1,4 +1,4 @@
import math
import math
import os
import shutil
import subprocess
@ -16,83 +16,99 @@ from scipy.fftpack import fft, ifft
from scipy.signal import detrend
from numpy import angle
# fonction moyenne glissante
def lissage(Lx,Ly,p):
'''Fonction qui débruite une courbe par une moyenne glissante
sur 2P+1 points'''
Lxout=[]
Lyout=[]
Lxout = Lx[p: -p]
for index in range(p, len(Ly)-p):
average = np.mean(Ly[index-p : index+p+1])
Lyout.append(average)
return Lxout,Lyout
g = 9.81
# h = profondeur locale
#fs = fréquence echantillonage
# fs = fréquence echantillonage
# zmesP = profondeur de mesure de la pression
# zmesU = profondeur de mesure de la vitesse
def PUV_dam(u,p,h,fs,zmesP,zmesU):
#u = detrend(u)
#p = detrend(p)
def PUV_dam(u, p, h, fs, zmesP, zmesU):
# u = detrend(u)
# p = detrend(p)
ampliseuil = 0.001
N = len(u)
delta = fs
#transformée de fourrier
# transformée de fourrier
Yu = fft(u)
Yp = fft(p)
nyquist = 1/2
#Fu_xb = ((1:N/2)-1)/(N/2)/deltat*nyquist
xf = np.linspace(0.0, 1.0/(2.0/fs), N//2)
Ampu = np.abs(Yu[1:N//2])/(N/2.0)
Ampp = np.abs(Yp[1:N//2])/(N/2.0)
#pas de frequence deltaf
deltaf=1/(N/2)/delta*nyquist;
#phase
ThetaU=angle(Yu[1:N//2]);
ThetaP=angle(Yp[1:N//2]);
#calcul du coefficient de reflexion
nbf=len(xf);
if max(p) > 0 :
#si pas de données de pression, jsute Sheremet
#attention : on commence par le deuxieme point, le premier correspondant a frequence nulle
iicutoff_xb=max(min(np.where(xf>0.5))) #length(Fu_xb)) ?
#calcul de l'amplitude en deca de la frequence de coupure
nyquist = 1 / 2
# Fu_xb = ((1:N/2)-1)/(N/2)/deltat*nyquist
xf = np.linspace(0.0, 1.0 / (2.0 / fs), N // 2)
Ampu = np.abs(Yu[1 : N // 2]) / (N / 2.0)
Ampp = np.abs(Yp[1 : N // 2]) / (N / 2.0)
# pas de frequence deltaf
deltaf = 1 / (N / 2) / delta * nyquist
# phase
ThetaU = angle(Yu[1 : N // 2])
ThetaP = angle(Yp[1 : N // 2])
# calcul du coefficient de reflexion
nbf = len(xf)
if max(p) > 0:
# si pas de données de pression, jsute Sheremet
# attention : on commence par le deuxieme point, le premier correspondant a frequence nulle
iicutoff_xb = max(min(np.where(xf > 0.5))) # length(Fu_xb)) ?
# calcul de l'amplitude en deca de la frequence de coupure
k_xb = []
ii = 1
while ii<iicutoff_xb :
k_xb[ii] = newtonpplus(xf[ii],h,0);
a1=Ampu[ii];
a3=Ampp[ii];
phi1=ThetaU[ii];
phi3=ThetaP[ii];
omega[ii]=2*pi*xf[ii];
cc=omega[ii]*cosh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h);
ccp=omega[ii]*cosh(xf[ii]*(zmesP+h))/sinh(xf[ii]*h);
cs=omega[ii]*sinh(xf[ii]*(zmesU+h))/sinh(xf[ii]*h);
#Procedure de calcul des ai et ar sans courant
ccc[ii]=cc;
ccs[ii]=cs;
cccp[ii]=ccp;
#calcul des amplitudes des ondes incidentes a partir de uhoriz et p
aincident13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*xf[ii]*xf[ii]/(omega[ii]*omega[ii]*ccp*ccp)+2*a1*a3*g*k_xb[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii]))
areflechi13[ii]=0.5*sqrt(a1*a1/(cc*cc)+a3*a3*g*g*k_xb[ii]*k_xb[ii]/(omega[ii]*omega[ii]*ccp*ccp)-2*a1*a3*g*xf[ii]*cos(phi3-phi1)/(cc*ccp*omega[ii]))
cv=g*xf[ii]/(omega[ii]*ccp)
cp=1/cc
aprog[ii]= a3/(g*xf[ii]/(omega[ii]*ccp)); #hypothese progressive Drevard et al |u|/Cv
#aprog(ii)= a1/cp;
#|p|/Cp
if aincident13[ii]<0.18*ampliseuil:
r13[ii]=0
omega = []
ccc, ccs, cccp = [], [], []
aincident13, areflechi13 = [], []
aprog = []
r13 = []
ii = 0
while ii < iicutoff_xb:
k_xb.append(newtonpplus(xf[ii], h, 0))
a1 = Ampu[ii]
a3 = Ampp[ii]
phi1 = ThetaU[ii]
phi3 = ThetaP[ii]
omega.append(2 * np.pi * xf[ii])
cc = omega[ii] * np.cosh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
ccp = omega[ii] * np.cosh(xf[ii] * (zmesP + h)) / np.sinh(xf[ii] * h)
cs = omega[ii] * np.sinh(xf[ii] * (zmesU + h)) / np.sinh(xf[ii] * h)
# Procedure de calcul des ai et ar sans courant
ccc.append(cc)
ccs.append(cs)
cccp.append(ccp)
# calcul des amplitudes des ondes incidentes a partir de uhoriz et p
aincident13.append(0.5 * np.sqrt(
a1 * a1 / (cc * cc)
+ a3
* a3
* g
* g
* xf[ii]
* xf[ii]
/ (omega[ii] * omega[ii] * ccp * ccp)
+ 2 * a1 * a3 * g * k_xb[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
))
areflechi13.append(0.5 * np.sqrt(
a1 * a1 / (cc * cc)
+ a3
* a3
* g
* g
* k_xb[ii]
* k_xb[ii]
/ (omega[ii] * omega[ii] * ccp * ccp)
- 2 * a1 * a3 * g * xf[ii] * np.cos(phi3 - phi1) / (cc * ccp * omega[ii])
))
cv = g * xf[ii] / (omega[ii] * ccp)
cp = 1 / cc
aprog.append(a3 / (g * xf[ii] / (omega[ii] * ccp)))
# hypothese progressive Drevard et al |u|/Cv
# aprog(ii)= a1/cp;
# |p|/Cp
if aincident13[ii] < 0.18 * ampliseuil:
r13.append(0)
else:
r13[ii]=areflechi13[ii]/aincident13[ii]
#calcul des energies incidente et reflechie sans ponderation avec les voisins
Eprog=0.5*aprog**2/deltaf;
Eixb=0.5*aincident13**2/deltaf
Erxb=0.5*areflechi13**2/deltaf
F=Fu_xb[1:iicutoff_xb]
return Eixb,Erxb,Eprog,F
'test'
r13.append(areflechi13[ii] / aincident13[ii])
# calcul des energies incidente et reflechie sans ponderation avec les voisins
Eprog = 0.5 * aprog**2 / deltaf
Eixb = 0.5 * aincident13**2 / deltaf
Erxb = 0.5 * areflechi13**2 / deltaf
F = Fu_xb[1:iicutoff_xb]
return Eixb, Erxb, Eprog, F
"test"
# Calcul du vecteur d'onde en prÈsence d'un courant
@ -100,19 +116,29 @@ def PUV_dam(u,p,h,fs,zmesP,zmesU):
# a partir de la frÈquence f, la profondeur d'eau h et
# la vitesse u du courant
# kh : vecteur d'onde * profondeur d'eau
def newtonpplus(f,h,u) :
def newtonpplus(f, h, u):
# calcul de k:
g = 9.81
kh = 0.5
x = 0.001
u=-u
while (abs((kh - x)/x) > 0.00000001) :
u = -u
i = 0
while abs((kh - x) / x) > 0.00001:
i += 1
if i > 10**5:
sys.exit(1)
x = kh
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x)
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x)
kh = x - (fx/fprimx)
k = kh/h
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
2 * math.pi * f - (u / h) * x
)
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
)
kh = x - (fx / fprimx)
k = kh / h
return k
# fin du calcul de k
# fin du calcul de k

View file

@ -8,54 +8,68 @@ from matplotlib import animation
import cmath
from scipy.fft import fft
def newtonpplus(f,h,u) :
def newtonpplus(f, h, u):
# calcul de k:
g = 9.81
kh = 0.5
x = 0.001
u=-u
while (abs((kh - x)/x) > 0.00000001) :
u = -u
while abs((kh - x) / x) > 0.00000001:
x = kh
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u/h)*x)*(2*math.pi*f-(u/h)*x)
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u/g)*(2*math.pi*f-(u/h)*x)
kh = x - (fx/fprimx)
k = kh/h
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u / h) * x) * (
2 * math.pi * f - (u / h) * x
)
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u / g) * (2 * math.pi * f - (u / h) * x)
)
kh = x - (fx / fprimx)
k = kh / h
return k
def newtonpmoins(f,h,u0) :
def newtonpmoins(f, h, u0):
# calcul de k:
g = 9.81;
kh = 0.5;
x = 0.01;
x = 6*h;
while (np.abs((kh - x)/x) > 0.00000001):
x = kh;
fx = x*math.tanh(x) - (h/g)*(2*math.pi*f-(u0/h)*x)*(2*math.pi*f-(u0/h)*x);
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2)+(2*u0/g)*(2*math.pi*f-(u0/h)*x);
kh = x - (fx/fprimx);
k = kh/h
g = 9.81
kh = 0.5
x = 0.01
x = 6 * h
while np.abs((kh - x) / x) > 0.00000001:
x = kh
fx = x * math.tanh(x) - (h / g) * (2 * math.pi * f - (u0 / h) * x) * (
2 * math.pi * f - (u0 / h) * x
)
fprimx = (
math.tanh(x)
+ x * (1 - (math.tanh(x)) ** 2)
+ (2 * u0 / g) * (2 * math.pi * f - (u0 / h) * x)
)
kh = x - (fx / fprimx)
k = kh / h
return k
#Calcul du vecteur d'onde a partir de la frÈquence
#kh : vecteur d'onde * profondeur d'eau
def newtonpropa(hi,f):
# Calcul du vecteur d'onde a partir de la frÈquence
# kh : vecteur d'onde * profondeur d'eau
def newtonpropa(hi, f):
# calcul de k:
g=9.81;
si = (2*math.pi*f)**2/g;
kh = 0.5;
x = 0.001;
while (np.abs((kh - x)/x) > 0.00000001) :
x = kh;
fx = x*math.tanh(x) - si*hi;
fprimx = math.tanh(x) + x*(1- (math.tanh(x))**2);
kh = x - (fx/fprimx);
kpropa = kh/hi;
g = 9.81
si = (2 * math.pi * f) ** 2 / g
kh = 0.5
x = 0.001
while np.abs((kh - x) / x) > 0.00000001:
x = kh
fx = x * math.tanh(x) - si * hi
fprimx = math.tanh(x) + x * (1 - (math.tanh(x)) ** 2)
kh = x - (fx / fprimx)
kpropa = kh / hi
return kpropa
def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
def reflex3S(x1, x2, x3, xs1, xs2, xs3, h, mean_freq, fmin, fmax):
# Analyse avec transformee de fourier d un signal en sinus
# calcul du coefficient de reflexion en presence d un courant u
# tinit : temps initial
@ -69,77 +83,76 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
# ampliseuil : amplitude minimale des maxima recherches
# valeur du courant (u > 0 correspond a un courant dans le sens
# des x croissants)
#u=0;
# u=0;
# h profondeur d'eau
#hold on;
#fech=16;
#fmin=0.1;fmax=4;ampliseuil=0.005;
#nbrepoints=fech*T*1000;
#deltat=1./fech;
#tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
#aitheo=1;artheo=0.4;
#h=3;
#T=1.33;
#ftheo=1/T;
#fech=16;
#fmin=0.1;fmax=4;ampliseuil=0.005;
#nbrepoints=fech*T*1000;
#deltat=1./fech;
#tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
#t = [tinit:deltat:tfinal];
#ktheo = newtonpropa(ftheo,h);
#Positions respectives sondes amonts entr'elles et sondes aval
# hold on;
# fech=16;
# fmin=0.1;fmax=4;ampliseuil=0.005;
# nbrepoints=fech*T*1000;
# deltat=1./fech;
# tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
# aitheo=1;artheo=0.4;
# h=3;
# T=1.33;
# ftheo=1/T;
# fech=16;
# fmin=0.1;fmax=4;ampliseuil=0.005;
# nbrepoints=fech*T*1000;
# deltat=1./fech;
# tinit=0;tfinal=tinit+deltat*(nbrepoints-1);
# t = [tinit:deltat:tfinal];
# ktheo = newtonpropa(ftheo,h);
# Positions respectives sondes amonts entr'elles et sondes aval
# entr'elles
# xs1=0;xs2=0.80;xs3=1.30;
#ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL
ampliseuil=0.005;
# ENTREES DONNEES DES 3 SONDES AMONT et des 2 SONDES AVAL
ampliseuil = 0.005
#'check'
#pause
#PAS DE TEMPS
deltat1=1/mean_freq;
deltat2=1/mean_freq;
deltat3=1/mean_freq;
#transformees de Fourier
Y1 = fft(x1,len(x1));
N1 = len(Y1);
Y2 = fft(x2,len(x2));
N2 = len(Y2);
Y3 = fft(x3,len(x3));
N3 = len(Y3);
#amplitudes normalisees, soit coef de fourier
amplitude1=np.abs(Y1[1:N1//2])/(N1//2);
nyquist = 1/2;
freq1 = (np.arange(1, (N1//2)+1, 1)-1)/(N1//2)/deltat1*nyquist;
amplitude2=np.abs(Y2[1:N2//2])/(N2//2);
nyquist = 1/2;
freq2 = (np.arange(1, (N2//2)+1, 1)-1)/(N2//2)/deltat2*nyquist;
amplitude3=np.abs(Y3[1:N3//2])/(N3//2);
nyquist = 1/2;
freq3 = (np.arange(1, (N3//2)+1, 1)-1)/(N3//2)/deltat3*nyquist;
#recherche de la phase
theta1=np.angle(Y1[1:N1//2]);
theta2=np.angle(Y2[1:N2//2]);
theta3=np.angle(Y3[1:N3//2]);
#pas de frequence deltaf
deltaf=1/(N1//2)/deltat1*nyquist;
nbrefreq=len(freq1);
#Caracteristiques fondamentaux,sondes canaux 1 et 3
#distances entre les sondes
x12=xs2-xs1;
x13=xs3-xs1;
x23=xs3-xs2;
#Debut calcul des coefficients de reflexion
indmin=np.min(np.where(freq1>0.02));
indfmin=np.min(np.where(freq1>fmin));
indfmax=np.max(np.where(freq1<fmax));
# pause
# PAS DE TEMPS
deltat1 = 1 / mean_freq
deltat2 = 1 / mean_freq
deltat3 = 1 / mean_freq
# transformees de Fourier
Y1 = fft(x1, len(x1))
N1 = len(Y1)
Y2 = fft(x2, len(x2))
N2 = len(Y2)
Y3 = fft(x3, len(x3))
N3 = len(Y3)
# amplitudes normalisees, soit coef de fourier
amplitude1 = np.abs(Y1[1 : N1 // 2]) / (N1 // 2)
nyquist = 1 / 2
freq1 = (np.arange(1, (N1 // 2) + 1, 1) - 1) / (N1 // 2) / deltat1 * nyquist
amplitude2 = np.abs(Y2[1 : N2 // 2]) / (N2 // 2)
nyquist = 1 / 2
freq2 = (np.arange(1, (N2 // 2) + 1, 1) - 1) / (N2 // 2) / deltat2 * nyquist
amplitude3 = np.abs(Y3[1 : N3 // 2]) / (N3 // 2)
nyquist = 1 / 2
freq3 = (np.arange(1, (N3 // 2) + 1, 1) - 1) / (N3 // 2) / deltat3 * nyquist
# recherche de la phase
theta1 = np.angle(Y1[1 : N1 // 2])
theta2 = np.angle(Y2[1 : N2 // 2])
theta3 = np.angle(Y3[1 : N3 // 2])
# pas de frequence deltaf
deltaf = 1 / (N1 // 2) / deltat1 * nyquist
nbrefreq = len(freq1)
# Caracteristiques fondamentaux,sondes canaux 1 et 3
# distances entre les sondes
x12 = xs2 - xs1
x13 = xs3 - xs1
x23 = xs3 - xs2
# Debut calcul des coefficients de reflexion
indmin = np.min(np.where(freq1 > 0.02))
indfmin = np.min(np.where(freq1 > fmin))
indfmax = np.max(np.where(freq1 < fmax))
T = []
fre = []
aincident12 = []
@ -155,66 +168,104 @@ def reflex3S(x1,x2,x3,xs1,xs2,xs3,h,mean_freq,fmin,fmax) :
Ereflechi123 = []
count = 0
for jj in np.arange(indfmin, indfmax, 1):
f=freq1[jj]
#periode
T.append(1/f)
f = freq1[jj]
# periode
T.append(1 / f)
fre.append(f)
#calcul des vecteurs d'onde
kplus = newtonpplus(f,h,0)
kmoins = newtonpmoins(f,h,0)
k = newtonpropa(h,f)
deltaku=k-(kmoins+kplus)/2
#amplitude des signaux pour la frequence f:
a1=amplitude1[jj]
a2=amplitude2[jj]
a3=amplitude3[jj]
#dephasages entre les signaux experimentaux des 3 sondes amont
phi1=theta1[jj]
phi2=theta2[jj]
phi3=theta3[jj]
phi12=phi2-phi1
phi13=phi3-phi1
phi23=phi3-phi2
#evolution theorique entre les sondes de la phase pour une onde progressive
delta12p= -kplus*x12
delta13p= -kplus*x13
delta23p= -kplus*x23
delta12m= -kmoins*x12
delta13m= -kmoins*x13
delta23m= -kmoins*x23
#calcul du coefficient de reflexion a partir des sondes 1 et 2
aincident12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12+delta12p))/(2*np.abs(math.sin((delta12p+delta12m)/2))))
areflechi12.append(math.sqrt(a1*a1+a2*a2-2*a1*a2*math.cos(phi12-delta12m))/(2*np.abs(math.sin((delta12p+delta12m)/2))))
#r12(jj)=areflechi12(jj)/aincident12(jj);
#calcul du coefficient de reflexion a partir des sondes 2 et 3
aincident23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23+delta23p))/(2*np.abs(math.sin((delta23p+delta23m)/2))))
areflechi23.append(math.sqrt(a2*a2+a3*a3-2*a2*a3*math.cos(phi23-delta23m))/(2*np.abs(math.sin((delta23p+delta23m)/2))))
#r23(jj)=areflechi23(jj)/aincident23(jj);
#calcul du coefficient de reflexion a partir des sondes 1 et 3
aincident13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13+delta13p))/(2*np.abs(math.sin((delta13p+delta13m)/2))))
areflechi13.append(math.sqrt(a1*a1+a3*a3-2*a1*a3*math.cos(phi13-delta13m))/(2*np.abs(math.sin((delta13p+delta13m)/2))))
#r13.append(areflechi13[jj]/aincident13[jj])
#calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres
delta1m=0
delta2m=delta12m
delta3m=delta13m
delta1p=0
delta2p=delta12p
delta3p=delta13p
s1=cmath.exp(-1j*2*delta1m)+cmath.exp(-1j*2*delta2m)+cmath.exp(-1j*2*delta3m)
s2=cmath.exp(+1j*2*delta1p)+cmath.exp(+1j*2*delta2p)+cmath.exp(+1j*2*delta3p)
s12=cmath.exp(1j*(delta1p-delta1m))+cmath.exp(1j*(delta2p-delta2m))+cmath.exp(1j*(delta3p-delta3m))
s3=a1*cmath.exp(-1j*(phi1+delta1m))+a2*cmath.exp(-1j*(phi2+delta2m))+a3*cmath.exp(-1j*(phi3+delta3m))
s4=a1*cmath.exp(-1j*(phi1-delta1p))+a2*cmath.exp(-1j*(phi2-delta2p))+a3*cmath.exp(-1j*(phi3-delta3p))
s5=s1*s2-s12*s12
ai.append(abs((s2*s3-s12*s4)/s5))
ar.append(abs((s1*s4-s12*s3)/s5))
#refl[jj]=ar[jj]/ai[jj];
#Calcul de l'energie, on divise par le pas de frequence deltaf
#calcul de l'energie incidente sans ponderation avec les voisins
Eincident123.append(0.5*ai[count]*ai[count]/deltaf)
Ereflechi123.append(0.5*ar[count]*ar[count]/deltaf)
count+=1
# calcul des vecteurs d'onde
kplus = newtonpplus(f, h, 0)
kmoins = newtonpmoins(f, h, 0)
k = newtonpropa(h, f)
deltaku = k - (kmoins + kplus) / 2
# amplitude des signaux pour la frequence f:
a1 = amplitude1[jj]
a2 = amplitude2[jj]
a3 = amplitude3[jj]
# dephasages entre les signaux experimentaux des 3 sondes amont
phi1 = theta1[jj]
phi2 = theta2[jj]
phi3 = theta3[jj]
phi12 = phi2 - phi1
phi13 = phi3 - phi1
phi23 = phi3 - phi2
# evolution theorique entre les sondes de la phase pour une onde progressive
delta12p = -kplus * x12
delta13p = -kplus * x13
delta23p = -kplus * x23
delta12m = -kmoins * x12
delta13m = -kmoins * x13
delta23m = -kmoins * x23
# calcul du coefficient de reflexion a partir des sondes 1 et 2
aincident12.append(
math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 + delta12p))
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
)
areflechi12.append(
math.sqrt(a1 * a1 + a2 * a2 - 2 * a1 * a2 * math.cos(phi12 - delta12m))
/ (2 * np.abs(math.sin((delta12p + delta12m) / 2)))
)
# r12(jj)=areflechi12(jj)/aincident12(jj);
# calcul du coefficient de reflexion a partir des sondes 2 et 3
aincident23.append(
math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 + delta23p))
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
)
areflechi23.append(
math.sqrt(a2 * a2 + a3 * a3 - 2 * a2 * a3 * math.cos(phi23 - delta23m))
/ (2 * np.abs(math.sin((delta23p + delta23m) / 2)))
)
# r23(jj)=areflechi23(jj)/aincident23(jj);
# calcul du coefficient de reflexion a partir des sondes 1 et 3
aincident13.append(
math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 + delta13p))
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
)
areflechi13.append(
math.sqrt(a1 * a1 + a3 * a3 - 2 * a1 * a3 * math.cos(phi13 - delta13m))
/ (2 * np.abs(math.sin((delta13p + delta13m) / 2)))
)
# r13.append(areflechi13[jj]/aincident13[jj])
# calcul du coefficient de reflexion par methode des 3 sondesavec moindres carres
delta1m = 0
delta2m = delta12m
delta3m = delta13m
delta1p = 0
delta2p = delta12p
delta3p = delta13p
s1 = (
cmath.exp(-1j * 2 * delta1m)
+ cmath.exp(-1j * 2 * delta2m)
+ cmath.exp(-1j * 2 * delta3m)
)
s2 = (
cmath.exp(+1j * 2 * delta1p)
+ cmath.exp(+1j * 2 * delta2p)
+ cmath.exp(+1j * 2 * delta3p)
)
s12 = (
cmath.exp(1j * (delta1p - delta1m))
+ cmath.exp(1j * (delta2p - delta2m))
+ cmath.exp(1j * (delta3p - delta3m))
)
s3 = (
a1 * cmath.exp(-1j * (phi1 + delta1m))
+ a2 * cmath.exp(-1j * (phi2 + delta2m))
+ a3 * cmath.exp(-1j * (phi3 + delta3m))
)
s4 = (
a1 * cmath.exp(-1j * (phi1 - delta1p))
+ a2 * cmath.exp(-1j * (phi2 - delta2p))
+ a3 * cmath.exp(-1j * (phi3 - delta3p))
)
s5 = s1 * s2 - s12 * s12
ai.append(abs((s2 * s3 - s12 * s4) / s5))
ar.append(abs((s1 * s4 - s12 * s3) / s5))
# refl[jj]=ar[jj]/ai[jj];
# Calcul de l'energie, on divise par le pas de frequence deltaf
# calcul de l'energie incidente sans ponderation avec les voisins
Eincident123.append(0.5 * ai[count] * ai[count] / deltaf)
Ereflechi123.append(0.5 * ar[count] * ar[count] / deltaf)
count += 1
return ai,ar,Eincident123, Ereflechi123, indfmin, indfmax, fre
return ai, ar, Eincident123, Ereflechi123, indfmin, indfmax, fre

View file

@ -0,0 +1,83 @@
import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as sgl
from .reflex3s import reflex3s
from .pa.reflex3S import reflex3S
from .pa.PUV import PUV_dam
parser = argparse.ArgumentParser(description="Post-process swash output")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("post")
log.info("Starting post-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp = pathlib.Path(config.get("post", "inp"))
root = pathlib.Path(config.get("swash", "out"))
log.info(f"Reading data from '{inp}'")
x = np.load(inp.joinpath("xp.npy"))
t = np.load(inp.joinpath("tsec.npy"))
botl = np.load(inp.joinpath("botl.npy"))
watl = np.load(inp.joinpath("watl.npy"))
vel = np.load(inp.joinpath("vel.npy"))
x0 = config.getint("post", "x0")
arg_x0 = np.abs(x - x0).argmin()
t0 = config.getfloat("post", "t0")
arg_t0 = np.abs(t - t0).argmin()
dt = np.diff(t).mean()
f = 1 / dt
idx = [arg_x0 - 5, arg_x0, arg_x0 + 7]
wl = watl[arg_t0:, idx]
# Reflex3S
res = reflex3S(*wl.T, *x[idx], botl[idx].mean(), f, 0.02, 0.2)
f_, ai_, ar_ = reflex3s(wl.T, x[idx], botl[idx].mean(), f)
ai, ar, _, _, _, _, fre = res
# Custom PUV
eta = watl[t > t0, arg_x0]
u = vel[t > t0, 0, arg_x0]
phi_eta = sgl.welch(eta, f)
phi_u = sgl.welch(u, f)
phi_eta_u = sgl.csd(eta, u, f)
R = np.sqrt(
(np.abs(phi_eta[1]) + np.abs(phi_u[1]) - 2 * phi_eta_u[1].real)
/ (np.abs(phi_eta[1]) + np.abs(phi_u[1]) + 2 * phi_eta_u[1].real)
)
out = pathlib.Path(config.get("post", "out")).joinpath(f"t{t0}x{x0}")
log.info(f"Saving plots in '{out}'")
out.mkdir(parents=True, exist_ok=True)
plt.plot(fre, np.asarray(ar) / np.asarray(ai))
plt.xlim((0, 0.3))
plt.ylim((0, 1))
plt.savefig(out.joinpath("reflex3s_pa.pdf"))
plt.clf()
plt.plot(f_, ar_ / ai_)
plt.plot(phi_eta[0], R)
plt.xlim((0, 0.3))
plt.ylim((0, 1))
plt.savefig(out.joinpath("reflex3s.pdf"))
# pressk = np.load(inp.joinpath("pressk.npy"))
# press = pressk[:, 1, :]
# res = PUV_dam(vel[arg_t0:, 0, 500], press[arg_t0:, 500], botl[500], f, botl[500]/2, botl[500]/2)
# print(res)

View file

@ -0,0 +1,45 @@
import numpy as np
from scipy import fft
from scipy import signal as sgl
from scipy import optimize as opti
def reflex3s(eta, x, h, f):
eta_psd = np.stack([fft.rfft(z) for z in eta])
f_psd = fft.rfftfreq(eta.shape[1], 1 / f)
eta_amp = np.abs(eta_psd) / (f_psd.size - 1)
eta_phase = np.angle(eta_psd)
g = 9.81
k = np.asarray(
[
opti.root_scalar(
f=lambda k: k * np.tanh(k) - (2 * np.pi * f) ** 2 / g * h,
fprime=lambda k: np.tanh(k) + k * (1 - np.tanh(k) ** 2),
x0=0.5,
).root
/ h
for f in f_psd
]
)
s1 = 1 + np.exp(2j * k * (x[1] - x[0])) + np.exp(2j * k * (x[2] - x[0]))
s2 = 1 + np.exp(-2j * k * (x[1] - x[0])) + np.exp(-2j * k * (x[2] - x[0]))
s12 = 3
s3 = (
eta_amp[0] * np.exp(-1j * (eta_phase[0]))
+ eta_amp[1] * np.exp(-1j * (eta_phase[1] - k * (x[1] - x[0])))
+ eta_amp[2] * np.exp(-1j * (eta_phase[2] - k * (x[2] - x[0])))
)
s4 = (
eta_amp[0] * np.exp(-1j * (eta_phase[0]))
+ eta_amp[1] * np.exp(-1j * (eta_phase[1] + k * (x[1] - x[0])))
+ eta_amp[2] * np.exp(-1j * (eta_phase[2] + k * (x[2] - x[0])))
)
s5 = s1 * s2 - s12**2
ai = np.abs((s2 * s3 - s12 * s4) / s5)
ar = np.abs((s1 * s4 - s12 * s3) / s5)
return f_psd, ai, ar