1
Fork 0

Biblio: blocks; fin

This commit is contained in:
Edgar P. Burkhart 2022-02-21 16:10:50 +01:00
parent 6555771d3f
commit 6c78e187d2
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227

View file

@ -393,7 +393,7 @@ Nonetheless, the representation of porosity in those models is still mainly
based on experimental calibration, particularly for the inertia term of
porosity induced friction.
\subsection{Conclusion}
%\subsection{Conclusion}
%\paragraph{Notes}
%
@ -471,57 +471,94 @@ displacement. In contrast with the findings from \textcite{nott2003waves}, the
threshold wave amplitude for block displacement was found to be similar between
tsunami and storm waves.
\subsection{In-situ studies}
\textcite{nandasena2013boulder,liu2014experimental} performed experimental
studies of block displacement using dam break scenarios in a flume. The results
from both studies indicate that the primary mode of boulder motion for large
boulders is sliding, rather than rolling or saltation.
\cite{barbano2010large}: boulders deposity in Sicily -> probably tsunamis
\textcite{weiss2015untangling} highlights inadequacies in the criteria that are
generally used \parencite{nott2003waves,nandasena2011reassessment}. According
to \textcite{weiss2015untangling}, the use of a minimum threshold on block
displacement does not account for the possibility of a block returning to its
initial position after being slightly disloged. A new threshold is proposed on
the minimal movement of a block, while considering the time-dependent nature of
wave-induced flow. \textcite{weiss2015untangling} also shows the importance of
the pre-transport conditions on block displacement.
\cite{paris2011}:
\textcite{kennedy2017extreme} derived new equations following the approach from
\textcite{nandasena2011numerical} accounting for non-parallelepipedic blocks.
The revised equations lead to a lower velocity threshold for block movement.
This highlights the importance of boulder shape in displacement considerations.
\cite{nandasena2011numerical}
\cite{may2015block}
\cite{biolchi2016}
\cite{kennedy2016observations}
\cite{erdmann2018boulder}
\cite{cox2018extraordinary}
\textcite{lodhi2020role} highlighted the importance of hydrodynamic pressure in
block displacement. A new equation was given for the threshold flow velocity
for block movement. An experimental validation of the models was performed, and
showed the overestimation of the threshold velocity by previous models.
\subsection{Models}
\textcite{oetjen2021experiments} performed a review of boulder displacement
experiments. They found that the initial position of boulders relative to the
wave impact has a major influence on block displacement. Conversely, the
influence of bed roughness seems to have been overestimated in the past.
Similarly to \textcite{lodhi2020role}, \textcite{oetjen2021experiments}
highlights an overestimation of minimum wave height for block displacement by
earlier equations \parencite{nott1997extremely,nandasena2011reassessment}.
\cite{nott1997extremely}
\cite{nott2003waves} Submerged boulder:
\begin{equation}
u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag}
{C_d\left(\frac{ac}{b^2}\right)+C_l}
\end{equation}
\cite{imamura2008numerical}
\cite{barbano2010large}
\cite{nandasena2011numerical}
\cite{nandasena2011reassessment}
\begin{equation}
u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right) gc
\left(\cos\theta+\frac{c}{b}\sin\theta\right)}
{C_d\frac{c^2}{b^2}+C_l}
\end{equation}
\cite{buckley2012inverse}
\cite{weiss2012mystery}
\cite{nandasena2013boulder}
\cite{liu2014experimental}
\cite{weiss2015untangling}
\cite{zainali2015boulder}
\cite{kennedy2016observations}
\cite{kennedy2017extreme}
\cite{weiss2017toward}
\cite{bressan2018laboratory} Partially submerged boulders
\begin{equation}
u^2 \ge \frac{2b_wW}{\rho_w\left(b_DC_DA_{wfs}+b_LC_LA_{wbs}\right)}
\end{equation}
\cite{lodhi2020role}
\cite{oetjen2020significance}
\cite{oetjen2021experiments}: Review
\subsection{Conclusion}
%\subsection{In-situ studies}
%
%\cite{barbano2010large}: boulders deposity in Sicily -> probably tsunamis
%
%\cite{paris2011}:
%
%\cite{nandasena2011numerical}
%\cite{may2015block}
%\cite{biolchi2016}
%\cite{kennedy2016observations}
%\cite{erdmann2018boulder}
%\cite{cox2018extraordinary}
%
%\subsection{Models}
%
%\cite{nott1997extremely}
%
%\cite{nott2003waves} Submerged boulder:
%\begin{equation}
%u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right)ag}
%{C_d\left(\frac{ac}{b^2}\right)+C_l}
%\end{equation}
%
%\cite{imamura2008numerical}
%\cite{barbano2010large}
%\cite{nandasena2011numerical}
%
%\cite{nandasena2011reassessment}
%\begin{equation}
%u^2 \ge \frac{2\left(\frac{\rho_s}{\rho_w}-1\right) gc
%\left(\cos\theta+\frac{c}{b}\sin\theta\right)}
%{C_d\frac{c^2}{b^2}+C_l}
%\end{equation}
%
%\cite{buckley2012inverse}
%\cite{weiss2012mystery}
%\cite{nandasena2013boulder}
%\cite{liu2014experimental}
%\cite{weiss2015untangling}
%
%
%\cite{kennedy2016observations}
%\cite{kennedy2017extreme}
%\cite{weiss2017toward}
%
%\cite{bressan2018laboratory} Partially submerged boulders
%\begin{equation}
%u^2 \ge \frac{2b_wW}{\rho_w\left(b_DC_DA_{wfs}+b_LC_LA_{wbs}\right)}
%\end{equation}
%
%\cite{lodhi2020role}
%\cite{oetjen2020significance}
%
%\cite{oetjen2021experiments}: Review
%
%---
%\cite{zainali2015boulder}: Numerical model of block displacement