1
Fork 0
internship/swash/processing/sws_npz.py
2022-03-28 10:15:36 +02:00

51 lines
1.4 KiB
Python

import argparse
import configparser
import logging
import pathlib
from multiprocessing.pool import ThreadPool
import numpy as np
import pandas as pd
from .read_swash import ReadSwash
parser = argparse.ArgumentParser(description="Convert swash output to numpy")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("sws_npz")
log.info("Starting sws -> npz converter")
config = configparser.ConfigParser()
config.read("config.ini")
sws_out = pathlib.Path(config.get("swash", "out"))
inp = pathlib.Path(config.get("post", "inp"))
log.info(f"Reading swash output from '{sws_out}'")
rsws = ReadSwash()
np.save(inp.joinpath("tsec"), rsws.read_time(sws_out.joinpath("tsec.dat")))
np.save(inp.joinpath("xp"), rsws.read_x(sws_out.joinpath("xp.dat")))
var = {
"dep": rsws.read_scalar,
"botl": rsws.read_const,
"watl": rsws.read_scalar,
"vel": rsws.read_vector,
"press": rsws.read_scalar,
"zk": rsws.read_scalar_lay,
"velk": rsws.read_vector_lay,
"vz": rsws.read_scalar_lay,
}
inp.mkdir(exist_ok=True)
with ThreadPool() as pool:
log.info("Converting all data")
pool.map(
lambda x: np.save(
inp.joinpath(x[0]),
x[1](sws_out.joinpath(x[0]).with_suffix(".dat")),
),
var.items(),
)