137 lines
3.5 KiB
Python
137 lines
3.5 KiB
Python
import argparse
|
|
import gzip
|
|
from itertools import starmap
|
|
import logging
|
|
from multiprocessing import pool
|
|
import pathlib
|
|
import pickle
|
|
import sys
|
|
|
|
from cycler import cycler
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.ticker import MultipleLocator
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
|
|
from .olaflow import OFModel
|
|
|
|
parser = argparse.ArgumentParser(description="Post-process olaflow results")
|
|
parser.add_argument("-v", "--verbose", action="count", default=0)
|
|
parser.add_argument(
|
|
"-o",
|
|
"--output",
|
|
type=pathlib.Path,
|
|
help="Output directory for pickled data",
|
|
required=True,
|
|
)
|
|
parser.add_argument(
|
|
"-f",
|
|
"--func",
|
|
type=str,
|
|
help="Post-process function to compare",
|
|
default="graphUniform",
|
|
choices=("graphUniform", "graphUniform2"),
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
|
|
log = logging.getLogger("ola_post")
|
|
|
|
log.info("Plotting comparison of model output")
|
|
|
|
|
|
def get_pickle(out):
|
|
with (
|
|
path.open("rb")
|
|
if (path := out.joinpath("pickle")).exists()
|
|
else gzip.open(path.with_suffix(".gz"), "rb")
|
|
) as f:
|
|
return pickle.load(f)
|
|
|
|
|
|
model = get_pickle(args.output)
|
|
|
|
figsize = 15 / 2.54, 6 / 2.54
|
|
|
|
fig, ax_ = plt.subplots(
|
|
2,
|
|
figsize=figsize,
|
|
dpi=200,
|
|
constrained_layout=True,
|
|
)
|
|
|
|
_ax = ax_[0]
|
|
v = np.nanmax(np.abs(np.where(
|
|
model.post_fields[args.func]["alpha.water"] > 0.5,
|
|
#np.linalg.norm(model.post_fields[args.func]["U"], axis=2),
|
|
model.post_fields[args.func]["U"][..., 0],
|
|
np.nan,
|
|
)))
|
|
v150 = np.nanmax(np.abs(np.where(
|
|
(model.post_fields[args.func]["alpha.water"] > 0.5) & (model.t[:, None] > 170) & (model.t[:, None] < 200),
|
|
#np.linalg.norm(model.post_fields[args.func]["U"], axis=2),
|
|
model.post_fields[args.func]["U"][..., 0],
|
|
np.nan,
|
|
)))
|
|
_data = model.post_fields[args.func]["U"][..., 0].T
|
|
#_c = _ax.contourf(
|
|
# model.t,
|
|
# model.post_fields[args.func]["x_U"],
|
|
# _data,
|
|
# cmap="PiYG",
|
|
# #levels=[-15, -10, -5, -2, -1, 0, 1, 2, 5, 10, 15],
|
|
# vmin=-np.nanmax(np.abs(_data)),
|
|
# vmax=np.nanmax(np.abs(_data)),
|
|
# extend="both",
|
|
#)
|
|
_c = _ax.imshow(
|
|
_data[::-1],
|
|
cmap="PiYG",
|
|
alpha=np.clip(model.post_fields[args.func]["alpha.water"], 0, 1).T[::-1],
|
|
extent=(
|
|
model.t.min(),
|
|
model.t.max(),
|
|
model.post_fields[args.func]["x_U"].min(),
|
|
model.post_fields[args.func]["x_U"].max(),
|
|
),
|
|
vmin=-v150,
|
|
vmax=v150,
|
|
aspect="auto",
|
|
)
|
|
_ax.set(xlim=(0, 400))
|
|
_ax.set(facecolor="k")
|
|
_ax.xaxis.set_minor_locator(MultipleLocator(10))
|
|
_ax.yaxis.set_minor_locator(MultipleLocator(1))
|
|
_ax.set(ylabel="z (m)")
|
|
_ax.axes.set_xticklabels([])
|
|
fig.colorbar(_c, label=f"U (m/s)", ax=_ax)
|
|
log.info(f"Vitesse max: {v}m/s")
|
|
log.info(f"Vitesse max [170,200]: {v150}m/s")
|
|
log.info(f"Écart: {abs(np.nanmax(_data)-17.7)/17.7:%}")
|
|
|
|
|
|
x = model.post_fields[args.func]["x_U"]
|
|
i0 = np.argmin(np.abs(x - 5))
|
|
_data = model.post_fields[args.func]["U"][..., i0, 0]
|
|
_alpha = model.post_fields[args.func]["alpha.water"][..., i0]
|
|
|
|
ax = ax_[1]
|
|
ax.fill_between(model.t, np.where(_alpha > 0.5, _data, 0), lw=1, color="#898989", edgecolor="k")
|
|
#ax.autoscale(True, "x", True)
|
|
ax.set(xlim=(0, 400))
|
|
ax.set(xlabel="t (s)", ylabel="U (m/s)")
|
|
ax.grid(c="k", alpha=.2)
|
|
ax.xaxis.set_minor_locator(MultipleLocator(10))
|
|
ax.yaxis.set_minor_locator(MultipleLocator(2))
|
|
|
|
fig.savefig(
|
|
args.output.joinpath(
|
|
f"U_{args.func}.pdf"
|
|
)
|
|
)
|
|
fig.savefig(
|
|
args.output.joinpath(
|
|
f"U_{args.func}.jpg"
|
|
)
|
|
)
|